n/a
Abstract Title:

A 1.8-GHz radiofrequency radiation induces EGF receptor clustering and phosphorylation in cultured human amniotic (FL) cells.

Abstract Source:

Int J Radiat Biol. 2012 Mar ;88(3):239-44. Epub 2011 Nov 18. PMID: 22032630

Abstract Author(s):

Wenjun Sun, Xiuying Shen, Dongbo Lu, Yiti Fu, Deqiang Lu, Huai Chiang

Article Affiliation:

Wenjun Sun

Abstract:

PURPOSE: Many studies have shown that exposure to radiofrequency radiation (RFR) could activate cellular signal transduction pathways. In the present research, we investigated the effects of exposure to a 1.8-GHz RFR at different intensities on epidermal growth factor (EGF) receptor clustering and phosphorylation in human amniotic (FL) cells.

MATERIALS AND METHODS: Receptor clustering on cellular membrane surface was analyzed using immunofluorescence assessed by confocal microscopy, and phosphorylation of EGF receptors was measured by western blot technology. EGF treatment served as a positive control.

RESULTS: The results showed that, compared with sham exposure, exposure to RFR at specific absorption rate (SAR) of 0.5, 1.0, 2.0, or 4.0 W/kg for 15 min significantly induced EGF receptor clustering and enhanced phosphorylation on the tyrosine-1173 residue in FL cells, whereas exposure to a SAR 0.1 W/kg radiation for 15 min did not cause a significant effect.

CONCLUSION: Based on the results of this experiment, we conclude that membrane receptors could be one of the main targets that RFR interacts with cells, and the dose-rate threshold, in the case of EGF receptors, is between SAR of 0.1 and 0.5 W/kg. The results indicate a sigmoid dependence of RFR effects on intensity.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.