Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Depression: 21st Century Solutions + The Dark Side of Wheat

n/a

Why You Don't See Ads on GreenMedInfo

Did you know that GreenMedInfo.com is is 100% member supported? It is through your membership that we are able to add research content daily, provide thoughtful articles on groundbreaking health & wellness topics, and continue to educate and empower people on the science supporting natural healing.

Our website has always offered open access to our carefully curated research (and always will) but we recently made the decision to become completely advertisement free.

In order for us to continue, we need your support more than ever. Our memberships start at only $8.00 per month and provide you with enhanced content & features.

We appreciate you supporting our mission and sharing our passion!

For more information on becoming a member of GreenMedInfo.com, click here.


Abstract Title:

Transgenerational pancreatic impairment with Igf2/H19 epigenetic alteration induced by p,p'-DDE exposure in early life.

Abstract Source:

Toxicol Lett. 2017 Oct 5 ;280:222-231. Epub 2017 Sep 1. PMID: 28867213

Abstract Author(s):

Yang Song, Lei Yang

Article Affiliation:

Yang Song

Abstract:

The hypothesis of fetal origins indicates that exposures in early development could induce epigenetic modifications in the male germ-line, affecting the susceptibility of adult-onset disease for generations. p,p'-DDE, the primary metabolite of persistent organochlorine pesticide DDT, is highly correlated with impaired glucose tolerance (IGT) and a strong contributing factor to type 2 diabetes. In our previous study, ancestral p,p'-DDE exposure could induce transgenerational impaired male fertility with sperm Igf2 hypomethylation. It is still unknown whether this germline epigenetic defect would affect the somatic tissue endocrine pancreas. Gestating F0 generation females were exposed to p,p'-DDE from gestation day 8 to 15. The F1 male offspring were mated with female to produce F2 progeny. F3 generation was obtained by intercrossing the control and treated male and female of F2 generation and divided as C♂-C♀, DDE♂-DDE♀, DDE♂-C♀ and C♂-DDE♀. Results indicated that F1 offspring in p,p'-DDE group exhibited impaired glucose tolerance (IGT), abnormal insulin secretion, β-cell dysfunction and altered Igf2 and H19 expression induced by Igf2/H19 hypomethylation, which could be transferredto the F3 offspring through the male germ line. IGT and abnormal insulin secretion were more obvious in males than those in females. Ancestral p,p'-DDE exposure could induce transgenerational pancreatic impairment with Igf2/H19 epigenetic defect.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Depression: 21st Century Solutions + The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2018 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.