Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

500+ pages of Natural Medicine Alternatives and Information.

n/a
Abstract Title:

Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice.

Abstract Source:

Eur J Nutr. 2013 Sep ;52(6):1607-19. Epub 2012 Dec 13. PMID: 23238530

Abstract Author(s):

Myoung Jin Son, Miki Minakawa, Yutaka Miura, Kazumi Yagasaki

Article Affiliation:

Myoung Jin Son

Abstract:

PURPOSE: Although several researches have demonstrated that rooibos extract has hypoglycemic effect, the role of aspalathin, a main polyphenol in the extract, remains unclear. Our aims were to find specific mechanisms for anti-diabetic action of aspalathin employing a rat skeletal muscle-derived cell line (L6 myocytes) and a rat-derived pancreaticβ-cell line (RIN-5F cells) and to investigate its effect in type 2 diabetic model ob/ob mice.

METHODS: We investigated in vitro the effect of aspalathin on the glucose metabolism through the studies on molecular mechanisms of glucose uptake using cultured L6 myotubes. We also measured the antioxidative ability of aspalathin against reactive oxygen species (ROS) generated by artificial advanced glycation end product (AGE) in RIN-5F cells. In vivo, ob/ob mice were fed 0.1 % aspalathin-containing diet for 5 weeks, and the effect of aspalathin on fasting blood glucose level, glucose intolerance, and hepatic gene expression was studied.

RESULTS: Aspalathin dose dependently increased glucose uptake by L6 myotubes and promoted AMP-activated protein kinase (AMPK) phosphorylation. Aspalathin enhanced GLUT4 translocation to plasma membrane in L6 myoblasts and myotubes. In RIN-5F cells, aspalathin suppressed AGE-induced rises in ROS. In vivo, aspalathin significantly suppressed the increase in fasting blood glucose levels and improved glucose intolerance. Furthermore, aspalathin decreased expression of hepatic genes related to gluconeogenesis and lipogenesis.

CONCLUSIONS: Hypoglycemic effect of aspalathin is related to increased GLUT4 translocation to plasma membrane via AMPK activation. In addition, aspalathin reduces the gene expression of hepatic enzymes related to glucose production and lipogenesis. These results strongly suggest that aspalathin has anti-diabetic potential.

Study Type : Animal Study
Additional Links

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.