Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Depression: 21st Century Solutions + The Dark Side of Wheat

n/a
Abstract Title:

Caffeic acid phenethyl ester exerts apoptotic and oxidative stress on human multiple myeloma cells.

Abstract Source:

Invest New Drugs. 2018 Nov 22. Epub 2018 Nov 22. PMID: 30465316

Abstract Author(s):

Elizabeth Hernandez Marin, Hana Paek, Mei Li, Yesung Ban, Marie Katie Karaga, Rangaiah Shashidharamurthy, Xinyu Wang

Article Affiliation:

Elizabeth Hernandez Marin

Abstract:

Caffeic acid phenethyl ester (CAPE) is a phenolic compound initially identified in bee glue. CAPE is reported to exhibit antitumor activity in many cancer models. However, the effect of CAPE on multiple myeloma (MM) is not well studied. We investigated the anti-myeloma effect of CAPE, and the data showed that CAPE inhibited the growth of human MM cells in a dose (1 ~ 30 μM) and time (24 ~72 h) dependent manner without altering the viability of normal human peripheral blood B cells. Stress and toxicity pathway analysis demonstrated that CAPE, in a dose- and time-related fashion, induced the expression of apoptotic and oxidative stress-response genes including growth arrest and DNA-damage inducible, alpha and gamma (GADD45A and GADD45G) and heme oxygenase-1. Apoptosis of MM cells by CAPE was further confirmed through flow cytometric analysis with up to 50% apoptotic cells induced by 50 μM CAPE within 24 h. Western blot analysis revealed the CAPE-inducedactivation of apoptosis executioner enzyme caspase-3, and corresponding cleavage of its downstream target poly(ADP-ribose)polymerase (PARP). The oxidative stress caused by CAPE cytotoxicity in MM cells was evaluated through measurement of reactive oxygen species (ROS) level, antioxidant interventionand glutathione depletion. The intracellular ROS level was not elevated by CAPE, but the pretreatment of antioxidant (N-acetyl cysteine) and glutathione synthesis inhibitor (buthionine sulfoximine) suggested that CAPE may cause oxidative stress by decrease of intracellular antioxidant level ratherthan over production of ROS. These data suggest that CAPE promotes apoptosis through oxidative stress in human multiple myeloma cells.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Depression: 21st Century Solutions + The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.