n/a
Abstract Title:

Cannabinoids prevent depressive-like symptoms and alterations in BDNF expression in a rat model of PTSD.

Abstract Source:

Prog Neuropsychopharmacol Biol Psychiatry. 2018 Feb 17 ;84(Pt A):129-139. Epub 2018 Feb 17. PMID: 29458190

Abstract Author(s):

Or Burstein, Noa Shoshan, Ravid Doron, Irit Akirav

Article Affiliation:

Or Burstein

Abstract:

Posttraumatic stress disorder (PTSD) is a debilitating condition highly comorbid with depression. The endocannabinoid (eCB) system and brain-derived neurotrophic factor (BDNF) are suggestively involved in both disorders. We examined whether cannabinoids can prevent the long-term depressive-like symptoms induced by exposure to the shock and situational reminders (SRs) model of PTSD. The CB1/2 receptor agonist WIN55,212-2 (0.5 mg/kg; i.p.), the fatty acid hydrolase (FAAH) inhibitor URB597 (0.3 mg/kg, i.p.) or vehicle were administered 2 h after severe shock. Cannabinoids prevented the shock/SRs-induced alterations in social recognition memory, locomotion, passive coping, anxiety-like behavior, anhedonia, fear retrieval, fear extinction and startle response as well as the decrease in BDNF levels in the hippocampus and prefrontal cortex (PFC). Furthermore, significant correlations were found between depressive-like behaviors and BDNF levels in the brain. The findings suggest that cannabinoids may prevent both depressive- and PTSD-like symptoms following exposure to severe stress and that alterations in BDNF levels in the brains' fear circuit are involved in these effects.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.