Abstract Title:

Brain proteome response following whole body exposure of mice to mobile phone or wireless DECT base radiation.

Abstract Source:

Electromagn Biol Med. 2012 Jan 20. Epub 2012 Jan 20. PMID: 22263702

Abstract Author(s):

Adamantia F Fragopoulou, Athina Samara, Marianna H Antonelou, Anta Xanthopoulou, Aggeliki Papadopoulou, Konstantinos Vougas, Eugenia Koutsogiannopoulou, Ema Anastasiadou, Dimitrios J Stravopodis, George Th Tsangaris, Lukas H Margaritis

Article Affiliation:

Department of Cell Biology and Biophysics, Athens University , Athens , Greece.

Abstract:

The objective of this study was to investigate the effects of two sources of electromagnetic fields (EMFs) on the proteome of cerebellum, hippocampus, and frontal lobe in Balb/c mice following long-term whole body irradiation. Three equally divided groups of animals (6 animals/group) were used; the first group was exposed to a typical mobile phone, at a SAR level range of 0.17-0.37 W/kg for 3 h daily for 8 months, the second group was exposed to a wireless DECT base (Digital Enhanced Cordless Telecommunications/Telephone) at a SAR level range of 0.012-0.028 W/kg for 8 h/day also for 8 months and the third group comprised the sham-exposed animals. Comparative proteomics analysis revealed that long-term irradiation from both EMF sources altered significantly (p < 0.05) the expression of 143 proteins in total (as low as 0.003 fold downregulation up to 114 fold overexpression). Several neural function related proteins (i.e., Glial Fibrillary Acidic Protein (GFAP), Alpha-synuclein, Glia Maturation Factor beta (GMF), and apolipoprotein E (apoE)), heat shock proteins, and cytoskeletal proteins (i.e., Neurofilaments and tropomodulin) are included in this list as well as proteins of the brain metabolism (i.e., Aspartate aminotransferase, Glutamate dehydrogenase) to nearly all brain regions studied. Western blot analysis on selected proteins confirmed the proteomics data. The observed protein expression changes may be related to brain plasticity alterations, indicative of oxidative stress in the nervous system or involved in apoptosis and might potentially explain human health hazards reported so far, such as headaches, sleep disturbance, fatigue, memory deficits, and brain tumor long-term induction under similar exposure conditions.

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.