Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

trans-10,cis-12 conjugated linoleic acid inhibits insulin-like growth factor-I receptor signaling in TSU-Pr1 human bladder cancer cells.

Abstract Source:

J Med Food. 2010 Feb;13(1):13-9. PMID: 20136431

Abstract Author(s):

Jae In Jung, Han Jin Cho, Jongdai Kim, Dae Young Kwon, Jung Han Yoon Park

Article Affiliation:

1 Department of Food Science and Nutrition, Hallym University , Songnam, Republic of Korea.

Abstract:

Abstract Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of linoleic acid; the major isomers are trans-10,cis-12 CLA (t10c12) and cis-9,trans-11 CLA (c9t11). CLA has been demonstrated to exert strong anticarcinogenic effects in a variety of experimental cancer models. We previously observed that CLA (a mixture of isomers) and t10c12 decreased the growth of TSU-Pr1 cells, whereas linoleic acid and c9t11 exerted no effects. In the current study, the mechanisms underlying the t10c12-mediated regulation of the growth of these bladder cancer cells were evaluated. TSU-Pr1 cells were incubated in serum-free medium with various concentrations of t10c12 or c9t11 in the presence or absence of insulin-like growth factor (IGF)-I. The incorporation of [(3)H]thymidine into DNA was decreased, and the number of annexin V-stained cells was increased after t10c12 treatment, whereas c9t11 had no effect on apoptosis or [(3)H]thymidine incorporation. Treatment with exogenous IGF-I alone increased the numbers of viable cells but did not counteract the t10c12-induced growth inhibition of TSU-Pr1 cells. t10c12 effected a dose-dependent reduction in IGF-I receptor (IGF-IR) transcripts and protein levels, whereas c9t11 exerted no effects. Additionally, t10c12 inhibited the IGF-I-induced phosphorylation of IGF-IR, the recruitment of the p85 regulatory subunit of phosphoinositide 3-kinase to IGF-IR, and the phosphorylation of Akt and extracellular signal-regulated kinase (ERK)-1/2. These results indicate that the inhibition of IGF-IR signaling and the activation of Akt and ERK-1/2 contributed to decreased cell proliferation and increased apoptosis in TSU-Pr1 cells treated with t10c12.

Study Type : In Vitro Study

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.