Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Depression: 21st Century Solutions + The Dark Side of Wheat

n/a
Article Publish Status: FREE
Abstract Title:

Combination of shikonin with paclitaxel overcomes multidrug resistance in human ovarian carcinoma cells in a P-gp-independent manner through enhanced ROS generation.

Abstract Source:

Chin Med. 2019 ;14:7. Epub 2019 Mar 12. PMID: 30911326

Abstract Author(s):

Zhu Wang, Jianhua Yin, Mingxing Li, Jing Shen, Zhangang Xiao, Yueshui Zhao, Chengliang Huang, Hanyu Zhang, Zhuo Zhang, Chi Hin Cho, Xu Wu

Article Affiliation:

Zhu Wang

Abstract:

Background: Shikonin (SKN), a naphthoquinone compound, is isolated from Chinese herbal medicineroot and has been studied as an anticancer drug candidate in human tumor models. This study is designed to investigate whether SKN can sensitize the therapeutic effect of paclitaxel (PTX) in drug-resistant human ovarian carcinoma cells.

Methods: Human ovarian carcinoma A2780 cell along with the paired PTX-resistant A2780/PTX cells were used. The effects of SKN, PTX or their combination on cell viability were conducted using Sulforhodamine B assay. P-glycoprotein (P-gp) expression was analyzed by flow cytometry after staining with P-gp-FITC anti-body. P-gp activity was determined by a fluorometric MDR assay kit or a rhodamine 123-based efflux assay, respectively. Apoptosis was evaluated by flow cytometry after Annexin V-FITC/PI co-staining. The effect of SKN, PTX or their combination on reactive oxygen species (ROS) generation and expression of pyruvate kinase M2 (PKM2) were investigated using flow cytometry or western blotting, respectively. PKM2 activity was detected by a Pyruvate Kinase Assay Kit.

Results: SKN/PTX co-treatment led to synergistically enhanced cytotoxicity and apoptosis in PTX-resistant ovarian cancer cells, indicating the circumvention of multidrug resistance (MDR) of PTX by SKN. Further study indicated that the MDR reversal effect of SKN was independent of inhibiting activity of the efflux transporter P-gp. Notably, SKN/PTX significantly increased the generation of intracellular ROS in A2780/PTX cells, and scavenging intracellular ROS blocked the sensitizing effects of SKN in PTX-induced cytotoxicity and apoptosis in A2780/PTX cells, but not in A2780 cells. Furthermore, SKN/PTX-induced downregulation of PKM2 (a key enzyme in glycolysis) and the suppression of its activity were inhibited by a ROS scavenger N-acetyl cysteine (NAC), suggesting that the synergy of the SKN/PTX combination may be not rely on PKM2 suppression.

Conclusions: These results reveal a P-gp-independent mechanism through ROS generation for the SKN/PTX combination to overcome MDR in ovarian cancer.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Depression: 21st Century Solutions + The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.