Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 250,000 with essential news, research & healthy tips, daily.

Easy Turmeric recipes + The Dark Side of Wheat

Abstract Title:

Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells.

Abstract Source:

Toxicol In Vitro. 2009 Oct;23(7):1365-71. Epub 2009 Aug 20. PMID: 19699289

Abstract Author(s):

Baher Fahmy, Stephania A Cormier

Article Affiliation:

Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.

Abstract:

Metal oxide nanoparticles are often used as industrial catalysts and elevated levels of these particles have been clearly demonstrated at sites surrounding factories. To date, limited toxicity data on metal oxide nanoparticles are available. To understand the impact of these airborne pollutants on the respiratory system, airway epithelial (HEp-2) cells were exposed to increasing doses of silicon oxide (SiO(2)), ferric oxide (Fe(2)O(3)) and copper oxide (CuO) nanoparticles, the leading metal oxides found in ambient air surrounding factories. CuO induced the greatest amount of cytotoxicity in a dose-dependent manner; while even high doses (400 microg/cm(2)) of SiO(2) and Fe(2)O(3) were non-toxic to HEp-2 cells. Although all metal oxide nanoparticles were able to generate ROS in HEp-2 cells, CuO was better able to overwhelm antioxidant defenses (e.g. catalase and glutathione reductase). A significant increase in the level of 8-isoprostanes and in the ratio of GSSG to total glutathione in cells exposed to CuO suggested that ROS generated by CuO induced oxidative stress in HEp-2 cells. Co-treatment of cells with CuO and the antioxidant resveratrol increased cell viability suggesting that oxidative stress may be the cause of the cytotoxic effect of CuO. These studies demonstrated that there is a high degree of variability in the cytotoxic effects of metal oxides, that this variability is not due to the solubility of the transition metal, and that this variability appears to involve sustained oxidative stress possibly due to redox cycling.

Study Type : In Vitro Study
Additional Links
Problem Substances : Copper Oxide : CK(14) : AC(5)

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 250,000 with essential news, research & healthy tips, daily.

Easy Turmeric recipes + The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2017 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.