n/a
Abstract Title:

Investigation of the neuroprotective effects of crocin via antioxidant activities in HT22 cells and in mice with Alzheimer's disease.

Abstract Source:

Int J Mol Med. 2018 Dec 18. Epub 2018 Dec 18. PMID: 30569175

Abstract Author(s):

Chunyue Wang, Xueying Cai, Wenji Hu, Zhiping Li, Fange Kong, Xia Chen, Di Wang

Article Affiliation:

Chunyue Wang

Abstract:

Due to its complex pathogenesis, the prevention and therapization of Alzheimer's disease (AD) remains a serious challenge. Crocin, the main compound isolated from Crocus sativus L., demonstrates various pharmacological activities including anti‑apoptotic properties. The present study investigated the neuroprotective effect of crocin and the underlying mechanisms. In l‑glutamate‑damaged HT22 cells, 3‑h crocin pretreatment strongly enhanced the HT22 cell viability, reduced the apoptotic rate, mitigated mitochondrial dysfunction, suppressed intracellular reactive oxygen species (ROS) accumulation and Ca2+ overload compared with untreated cells. Additionally, crocin significantly decreased the expression levels of Bax, Bad and cleaved caspase‑3 and increased the expression levels of B‑cell lymphoma‑extra large, phosphorylated (P‑) protein kinase B and P‑mammalian target of rapamycin compared with untreated cells. In mice with AD induced by d‑galactose and aluminum trichloride, crocin substantially improved the cognition and memory abilities of the mice as measured by their coordination of movement in an open field test, and reduced their escape time in the Morris water maze test compared with untreated mice. Biochemical analysis confirmed that crocin was able to reduce the Aβ1‑42 content in the mouse brains, increase the levels of glutathione peroxidase, superoxide dismutase, acetylcholine and cholineacetyltransferase, and reduce the levels of ROS and acetylcholinesterase in the serum, cerebral cortex and hypothalamus compared with untreated mice. Immunohistochemical analysis demonstrated that crocin reduced Aβ1‑42 deposition in the hippocampus of the brains of treated mice compared with untreated mice. In conclusion, crocin demonstrates good prospects in the treatment of AD through the oxidative stress‑associated apoptosis signaling pathway.

Study Type : Animal Study, In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.