Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves you essential news, research & healthy tips, daily.

Easy Turmeric recipes + The Dark Side of Wheat

Abstract Title:

Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells.

Abstract Source:

J Carcinog. 2004 May 12;3(1):8. Epub 2004 Aug 12. PMID: 15140256

Abstract Author(s):

Marjan J Van Erk, Eva Teuling, Yvonne CM Staal, Sylvie Huybers, Peter J Van Bladeren, Jac MMJG Aarts, Ben Van Ommen

Article Affiliation:

Wageningen University, Division of Toxicology, Tuinlaan 5, 6703 HE Wageningen, the Netherlands. marjan.vanerk@wur.nl

Abstract:

BACKGROUND: Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an anti-oxidant and it can act as an anti-inflammatory agent. The aim of this study was to elucidate mechanisms and effect of curcumin in colon cancer cells using gene expression profiling. METHODS: Gene expression changes in response to curcumin exposure were studied in two human colon cancer cell lines, using cDNA microarrays with four thousand human genes. HT29 cells were exposed to two different concentrations of curcumin and gene expression changes were followed in time (3, 6, 12, 24 and 48 hours). Gene expression changes after short-term exposure (3 or 6 hours) to curcumin were also studied in a second cell type, Caco-2 cells. RESULTS: Gene expression changes (>1.5-fold) were found at all time points. HT29 cells were more sensitive to curcumin than Caco-2 cells. Early response genes were involved in cell cycle, signal transduction, DNA repair, gene transcription, cell adhesion and xenobiotic metabolism. In HT29 cells curcumin modulated a number of cell cycle genes of which several have a role in transition through the G2/M phase. This corresponded to a cell cycle arrest in the G2/M phase as was observed by flow cytometry. Functional groups with a similar expression profile included genes involved in phase-II metabolism that were induced by curcumin after 12 and 24 hours. Expression of some cytochrome P450 genes was downregulated by curcumin in HT29 and Caco-2 cells. In addition, curcumin affected expression of metallothionein genes, tubulin genes, p53 and other genes involved in colon carcinogenesis. CONCLUSIONS: This study has extended knowledge on pathways or processes already reported to be affected by curcumin (cell cycle arrest, phase-II genes). Moreover, potential new leads to genes and pathways that could play a role in colon cancer prevention by curcumin were identified.

Study Type : In Vitro Study
Additional Links
Pharmacological Actions : Cell cycle arrest : CK(810) : AC(612)

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves you essential news, research & healthy tips, daily.

Easy Turmeric recipes + The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2017 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.