Abstract Title:

Curcumin Increases HSP70 Expression in Primary Rat Cortical Neuronal Apoptosis Induced by gp120 V3 Loop Peptide.

Abstract Source:

Neurochem Res. 2015 Sep ;40(9):1996-2005. Epub 2015 Aug 21. PMID: 26294283

Abstract Author(s):

Chenglai Xia, Yantao Cai, Shuhua Li, Jie Yang, Guohong Xiao

Article Affiliation:

Chenglai Xia

Abstract:

Neuronal cell dysfunction and apoptosis are the main causes of the invasion of the central nervous system by human immunodeficiency virus type 1 (HIV-1), although the underlying mechanism has not been well understood. Recent research has shown that curcumin might play an important role in regulating HIV-1 development. Heat shock protein 70 (HSP70), a protein induced by heat, was reported to inhibit apoptosis through various cell signaling pathways in brain. Overexpression of HSP70 could effectively protected neurons in many animal and cellular models of dementia. In the present study, the expression of HSP70 in the gp120 V3 loop peptide-induced neuronal apoptosis was investigated. Our results demonstrated that gp120 V3 loop peptide could induce primary rat cortical neuronal apoptosis. We also found that curcumin could increase HSP70 expression. In addition, the expression level of both HSP70 mRNA and HSP70 protein were dependent on the curcumin dose in the rat cortical neurons. Curcumin could improve HSP70 expression in gp120 V3 loop peptide-induced primary rat cortical neuronal apoptosis. In general, our results indicated that curcumin played an important role in the gp120 V3 loop peptide induced neuronal apoptosis by regulating HSP70.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.