Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Depression: 21st Century Solutions + The Dark Side of Wheat


Why You Don't See Ads on GreenMedInfo

Did you know that GreenMedInfo.com is is 100% member supported? It is through your membership that we are able to add research content daily, provide thoughtful articles on groundbreaking health & wellness topics, and continue to educate and empower people on the science supporting natural healing.

Our website has always offered open access to our carefully curated research (and always will) but we recently made the decision to become completely advertisement free.

In order for us to continue, we need your support more than ever. Our memberships start at only $8.00 per month and provide you with enhanced content & features.

We appreciate you supporting our mission and sharing our passion!

For more information on becoming a member of GreenMedInfo.com, click here.


Abstract Title:

Dietary curcumin ameliorates aging-related cerebrovascular dysfunction through the AMPK/uncoupling protein 2 pathway.

Abstract Source:

Cell Physiol Biochem. 2013 ;32(5):1167-77. Epub 2013 Nov 11. PMID: 24335167

Abstract Author(s):

Yunfei Pu, Hexuan Zhang, Peijian Wang, Yu Zhao, Qiang Li, Xing Wei, Yuanting Cui, Jing Sun, Qianhui Shang, Daoyan Liu, Zhiming Zhu

Article Affiliation:

Yunfei Pu

Abstract:

BACKGROUND/AIMS: Age-related cerebrovascular dysfunction contributes to stroke, cerebral amyloid angiopathy, cognitive decline and neurodegenerative diseases. One pathogenic mechanism underlying this effect is increased oxidative stress. Up-regulation of mitochondrial uncoupling protein 2 (UCP2) plays a crucial role in regulating reactive oxygen species (ROS) production. Dietary patterns are widely recognized as contributors to cardiovascular and cerebrovascular disease. In this study, we tested the hypothesis that dietary curcumin, which has an antioxidant effect, can improve aging-related cerebrovascular dysfunction via UCP2 up-regulation.

METHODS: The 24-month-old male rodents used in this study, including male Sprague Dawley (SD) rats and UCP2 knockout (UCP2-/-) and matched wild type mice, were given dietary curcumin (0.2%). The young control rodents were 6-month-old. Rodent cerebral artery vasorelaxation was detected by wire myograph. The AMPK/UCP2 pathway and p-eNOS in cerebrovascular and endothelial cells were observed by immunoblotting.

RESULTS: Dietary curcumin administration for one month remarkably restored the impaired cerebrovascular endothelium-dependent vasorelaxation in aging SD rats. In cerebral arteries from aging SD rats and cultured endothelial cells, curcumin promoted eNOS and AMPK phosphorylation, up-regulated UCP2 and reduced ROS production. These effects of curcumin were abolished by either AMPK or UCP2 inhibition. Chronic dietary curcumin significantly reduced ROS production and improved cerebrovascular endothelium-dependent relaxation in aging wild type mice but not in aging UCP2-/- mice.

CONCLUSIONS: Curcumin improves aging-related cerebrovascular dysfunction via the AMPK/UCP2 pathway.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Depression: 21st Century Solutions + The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2018 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.