n/a
Abstract Title:

High animal fat intake enhances prostate cancer progression and reduces glutathione peroxidase 3 expression in early stages of TRAMP mice.

Abstract Source:

Prostate. 2014 Sep ;74(13):1266-77. Epub 2014 Jul 22. PMID: 25053105

Abstract Author(s):

Seo-Na Chang, Juhee Han, Tamer Said Abdelkader, Tae-Hyoun Kim, Ji Min Lee, Juha Song, Kyung-Sul Kim, Jong-Hwan Park, Jae-Hak Park

Article Affiliation:

Seo-Na Chang

Abstract:

BACKGROUND: Prostate cancer is the most frequently diagnosed cancer in Western men, and more men have been diagnosed at younger ages in recent years. A high-fat Western-style diet is a known risk factor for prostate cancer and increases oxidative stress.

METHODS: We evaluated the association between dietary animal fat and expression of antioxidant enzymes, particularly glutathione peroxidase 3 (GPx3), in the early stages of transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Six-week-old male nontransgenic and TRAMP mice were placed on high animal fat (45% Kcal fat) or control (10% Kcal fat) diets and sacrificed after 5 or 10 weeks.

RESULTS: The histopathological score increased with age and high-fat diet consumption. The histopathological scores in dorsal and lateral lobes increased in the 10-week high-fat diet group (6.2±0.2 and 6.2±0.4, respectively) versus the 10-week control diet group (5.3±0.3 and 5.2±0.2, respectively). GPx3 decreased both at the mRNA and protein levels in mouse prostate. GPx3 mRNA expression decreased (∼36.27% and ∼23.91%, respectively) in the anterior and dorsolateral prostate of TRAMP mice fed a high-fat diet compared to TRAMP mice fed a control diet. Cholesterol treatment increased PC-3 human prostate cancer cell proliferation, decreased GPx3 mRNA and protein levels, and increased H2 O2 levels in culture medium. Moreover, increasing GPx3 mRNA expression by troglitazone in PC-3 cells decreased cell proliferation and lowered H2 O2 levels.

CONCLUSIONS: Dietary fat enhances prostate cancer progression, possibly by suppressing GPx3 expression and increasing proliferation of prostate intraepithelial neoplasia (PIN) epithelial cells.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.