n/a
Abstract Title:

Disruption of Kidney Metabolism in Rats after Subchronic Combined Exposure to Low-Dose Cadmium and Chlorpyrifos.

Abstract Source:

Chem Res Toxicol. 2018 Nov 30. Epub 2018 Nov 30. PMID: 30500169

Abstract Author(s):

Ming-Yuan Xu, Pan Wang, Ying-Jian Sun, Yi-Jun Wu

Article Affiliation:

Ming-Yuan Xu

Abstract:

Cadmium (Cd) and chlorpyrifos (CPF) often coexist in the environment and induce combined toxicity to organisms. Here we studied the combined nephrotoxicity of environmentally relevant low doses of Cd and CPF. We treated the mice for 90 days with different doses of Cd and CPF and their mixtures via oral gavage. Then histopathological evaluation and biochemical analysis for kidney tissues were carried out. The change of metabolites in kidney was detected by using a metabolomics approach using GC-MS. We found that Cd, CPF, and their mixtures caused oxidative damage, as well as disturbance of renal amino acid metabolism. We identified potential metabolite biomarkers in kidney, which included acetic acid for CPF treatment, glycerol and carboxylic acid for Cd treatment, and L-ornithine for the mixture of CPF and Cd treatment, respectively. In addition, we found that Cd promoted the metabolism of CPF in kidney. This may contribute to the result that the toxicity of the mixtures was lower than the sum of the toxicities of Cd and CPF alone. In conclusion, our results indicated that CPF and Cd could disrupt the kidney metabolism in rats even when they were exposed to very low dose of CPF and Cd.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.