Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 250,000 with essential news, research & healthy tips, daily.

Easy Turmeric recipes + The Dark Side of Wheat

Abstract Title:

DNA damage in fish (Anguilla anguilla) exposed to a glyphosate-based herbicide -- elucidation of organ-specificity and the role of oxidative stress.

Abstract Source:

Mutat Res. 2012 Mar 18 ;743(1-2):1-9. Epub 2012 Jan 14. PMID: 22266476

Abstract Author(s):

S Guilherme, I Gaivão, M A Santos, M Pacheco

Article Affiliation:

Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal. sofia.g.guilherme@ua.pt

Abstract:

Organophosphate herbicides are among the most dangerous agrochemicals for the aquatic environment. In this context, Roundup(®), a glyphosate-based herbicide, has been widely detected in natural water bodies, representing a potential threat to non-target organisms, namely fish. Thus, the main goal of the present study was to evaluate the genotoxic potential of Roundup(®) in the teleost fish Anguilla anguilla, addressingthe possible causative involvement of oxidative stress. Fish were exposed to environmentally realistic concentrations of this herbicide (58 and 116 μgL(-1)) during one or three days. The standard procedure of the comet assay was applied to gill and liver cells in order to determine organ-specificgenetic damage. Since liver is a central organ in xenobiotic metabolism, nucleoids of hepatic cells were also incubated with a lesion-specific repair enzyme (formamidopyrimidine DNA glycosylase - FPG), in order to recognise oxidised purines. Antioxidants were determined in both organs as indicatorsof pro-oxidant state. In general, both organs displayed an increase in DNA damage for the two Roundup(®) concentrations and exposure times, although liver showed to be less susceptible to the lower concentration. The enzyme-modified comet assay showed the occurrence of FPG-sensitive sites in liveronly after a 3-day exposure to the higher Roundup(®) concentration. The antioxidant defences were in general unresponsive, despite a single increment of catalase activity in gills (116 μgL(-1), 3-day) and a decrease of superoxide dismutase activity in liver (58 μgL(-1), 3-day). Overall, the mechanisms involved in Roundup(®)-induced DNA strand-breaks showed to be similar in both organs. Nevertheless, it was demonstrated that the type of DNA damage varies with the concentration and exposure duration. Hence, after 1-day exposure, an increase on pro-oxidant state is not a necessary condition for the induction of DNA-damaging effects of Roundup(®). By increasing the duration of exposure to three days, ROS-dependent processes gained preponderance as a mechanism of DNA-damage induction in the higher concentration.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 250,000 with essential news, research & healthy tips, daily.

Easy Turmeric recipes + The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2017 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.