Article Publish Status: FREE
Abstract Title:

Induction of apoptosis by a hexane extract of aged black garlic in the human leukemic U937 cells.

Abstract Source:

Nutr Res Pract. 2014 Apr ;8(2):132-7. Epub 2014 Mar 28. PMID: 24741395

Abstract Author(s):

Cheol Park, Sejin Park, Yoon Ho Chung, Gi-Young Kim, Young Whan Choi, Byung Woo Kim, Yung Hyun Choi

Article Affiliation:

Cheol Park

Abstract:

BACKGROUND/OBJECTIVES: In this study, the apoptogenic activity and mechanisms of cell death induced by hexane extract of aged black garlic (HEABG) were investigated in human leukemic U937 cells.

MATERIALS/METHODS: Cytotoxicity was evaluated by MTT (3-(4, 5-dimethyl-thiazol-2-yl)-2, 5-diphenyl tetrazoliumbromide) assay. Apoptosis was detected using 4,6-diamidino-2-phenyllindile (DAPI) staining, agarose gel electrophoresis and flow cytometry. The protein levels were determined by Western blot analysis. Caspase activity was measured using a colorimetric assay.

RESULTS: Exposure to HEABG was found to result in a concentration- and time-dependent growth inhibition by induction of apoptosis, which was associated with an up-regulation of death receptor 4 and Fas legend, and an increase in the ratio of Bax/Bcl-2 protein expression. Apoptosis-inducing concentrations of HEABG induced the activation of caspase-9, an initiator caspase of the mitochodrial mediated intrinsic pathway, and caspase-3, accompanied by proteolytic degradation of poly(ADP-ribose)-polymerase. HEABG also induced apoptosis via a death receptor mediated extrinsic pathway by caspase-8 activation, resulting in the truncation of Bid, and suggesting the existence of cross-talk between the extrinsic and intrinsic pathways. However, pre-treatment of U937 cells with the caspase-3 inhibitor, z-DEVD-fmk, significantly blocked the HEABG-induced apoptosis of these cells, and increased the survival rate of HEABG-treated cells, confirming that HEABG-induced apoptosis is mediated through activation of caspase cascade.

CONCLUSIONS: Based on the overall results, we suggest that HEABG reduces leukemic cell growth by inducing caspase-dependent apoptosis through both intrinsic and extrinsic pathways, implying its potential therapeutic value in the treatment of leukemia.

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.