n/a
Abstract Title:

Effects of Hesperidin on H₂O₂-Treated Chondrocytes and Cartilage in a Rat Osteoarthritis Model.

Abstract Source:

Med Sci Monit. 2018 Dec 17 ;24:9177-9186. Epub 2018 Dec 17. PMID: 30557884

Abstract Author(s):

Gongming Gao, Huimin Ding, Chao Zhuang, Weimin Fan

Article Affiliation:

Gongming Gao

Abstract:

BACKGROUND The purpose of this research was to investigate the effects of hesperidin on hydrogen peroxide (H₂O₂)-induced chondrocytes injury and cartilage degeneration in a rat model of osteoarthritis (OA). MATERIAL AND METHODS Chondrocytes were isolated from rat knee joints and treated with hesperidin alone or combined with H₂O₂. Then, Cell Counting Kit-8 (CCK-8) assay was used to assess cell viability. Activity of reactive oxygen species (ROS) and levels of malondialdehyde (MDA) were estimated. Cell apoptosis was assessed by flow cytometry assay. In addition, gene expression levels were measured for caspase 3, tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), collagen typeII (Col2a1), aggrecan, (sex-determining region Y)-box 9 (SOX9), matrix metalloproteinase (MMP)-13, and inducible nitric oxide synthase (iNOS) through quantitative real-time polymerase chain reaction (qPCR). To examine the effects on cartilage destruction in vivo, hesperidin or vehicle control were orally administrated in a surgically-induced osteoarthritis (OA) model. RESULTS The results indicated that hesperidin pretreatment of chondrocytes reduce H₂O₂-induced cytotoxicity and apoptosis. Hesperidin pretreatment decreased the formation of MDA and intracellular ROS, including chondrocyte apoptosis. Hesperidin also reversed the activity of H₂O₂ on inhibiting the Col2a1, aggrecan, and SOX9 gene expression and increasing the gene expression of caspase 3, IL-1β, TNFα, iNOS, and MMP13. In addition, hesperidin administration markedly attenuated cartilage destruction and reduced IL-1βand TNF-α levels in a surgically-induced OA model. CONCLUSIONS Our study suggests that hesperidin can prevent H₂O₂-induced chondrocytes injury through its antioxidant effects in vitro and reduce cartilage damage in a rat model of OA.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.