Abstract Title:

Diabetes of the liver: the link between nonalcoholic fatty liver disease and HFCS-55.

Abstract Source:

Obesity (Silver Spring). 2009 Nov;17(11):2003-13. Epub 2009 Mar 12. PMID: 19282820

Abstract Author(s):

Kate S Collison, Soad M Saleh, Razan H Bakheet, Rana K Al-Rabiah, Angela L Inglis, Nadine J Makhoul, Zakia M Maqbool, Marya Zia Zaidi, Mohammed A Al-Johi, Futwan A Al-Mohanna

Article Affiliation:

Cell Biology and Diabetes Research Unit, Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia. kate@kfshrc.edu.sa

Abstract:

Nonalcoholic fatty liver disease (NAFLD) is associated with obesity and insulin resistance. It is also a predisposing factor for type 2 diabetes. Dietary factors are believed to contribute to all three diseases. NAFLD is characterized by increased intrahepatic fat and mitochondrial dysfunction, and its etiology may be attributed to excessive fructose intake. Consumption of high fructose corn syrup-55 (HFCS-55) stands at up to 15% of the average total daily energy intake in the United States, and is linked to weight gain and obesity. The aim of this study was to establish whether HFCS-55 could contribute to the pathogenesis of NAFLD, by examining the effects of HFCS-55 on hepatocyte lipogenesis, insulin signaling, and cellular function, in vitro and in vivo. Exposure of hepatocytes to HFCS-55 caused a significant increase in hepatocellular triglyceride (TG) and lipogenic proteins. Basal production of reactive oxygen metabolite (ROM) was increased, together with a decreased capacity to respond to an oxidative challenge. HFCS-55 induced a downregulation of the insulin signaling pathway, as indicated by attenuated (ser473)phosphorylation of AKT1. The c-Jun amino-terminal kinase (JNK), which is intimately linked to insulin resistance, was also activated; and this was accompanied by an increase in endoplasmic reticulum (ER) stress and intracellular free calcium perturbation. Hepatocytes exposed to HFCS-55 exhibited mitochondrial dysfunction and released cytochrome C (CytC) into the cytosol. Hepatic steatosis and mitochondrial disruption was induced in vivo by a diet enriched with 20% HFCS 55; accompanied by hypoadiponectinemia and elevated fasting serum insulin and retinol-binding protein-4 (RBP4) levels. Taken together our findings indicate a potential mechanism by which HFCS-55 may contribute to the pathogenesis of NAFLD.

Print Options


Disqus

Login to Comment

Commenting is limited to Members only. If you are already a member, please login to post a comment. If you do not have a member account and would like to become a member, please click here to begin the process to become a member.

Popular Threads

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2016 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.