n/a
Abstract Title:

The inhibitory effect of helenalin on telomerase activity is attributed to the alkylation of the CYS445 residue: evidence from QM/MM simulations.

Abstract Source:

J Mol Graph Model. 2014 Jun ;51:97-103. Epub 2014 May 6. PMID: 24863344

Abstract Author(s):

Zhiqiang Zhang, Liancai Xu, Hon-Yeung Cheung

Article Affiliation:

Zhiqiang Zhang

Abstract:

Enhanced telomerase activity is a hallmark in the majority of cancer cells. Thus, understanding the interactions between telomerase and its inhibitors is fundamentally important for the development of novel anticancer drugs without severe side effects. In this study, the covalent binding of helenalin to CYS445 of telomerase (PDB ID: 3DU6) was simulated using combined quantum chemical and molecular mechanical (QM/MM) methods. The results showed that the reaction was a reversible Michael-type addition and a hydrogen bond was formed between helenalin and the side chain of LYS416 of telomerase during the reaction procedure. The LYS416 residue is vital to telomere DNA recognition by interacting with DNA base through hydrogen bonds. The alkylation of CYS445 of telomerase by helenalin may interfere with the telomere DNA recognition at the telomerase active site, thus resulting in inhibition of the enzyme activity.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.