Sayer Ji
Founder of GreenMedInfo.com

Sign up for our Free Newsletter

A Community of 200,000+ Subscribers benefit from our latest research and news.

Abstract Title:

Injectable electronic identification, monitoring, and stimulation systems.

Abstract Source:

Annu Rev Biomed Eng. 1999;1:177-209. PMID: 11701487

Abstract Author(s):

P R Troyk

Article Affiliation:

Department of Electrical and Computer Engineering, Pritzker Institute of Medical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, USA. troyk@charlie.cns.iit.edu

Abstract:

Historically, electronic devices such as pacemakers and neuromuscular stimulators have been surgically implanted into animals and humans. A new class of implants made possible by advances in monolithic electronic design and implant packaging is small enough to be implanted by percutaneous injection through large-gauge hypodermic needles and does not require surgical implantation. Among these, commercially available implants, known as radio frequency identification (RFID) tags, are used for livestock, pet, laboratory animal, and endangered-species identification. The RFID tag is a subminiature glass capsule containing a solenoidal coil and an integrated circuit. Acting as the implanted half of a transcutaneous magnetic link, the RFID tag is powered by and communicates with an extracorporeal magnetic reader. The tag transmits a unique identification code that serves the function of identifying the animal. Millions of RFID tags have been sold since the early 1980s. Based on the success of the RFID tags, research laboratories have developed injectable medical implants, known as micromodules. One type of micromodule, the microstimulator, is designed for use in functional-neuromuscular stimulation. Each microstimulator is uniquely addressable and could comprise one channel of a multichannel functional-neuromuscular stimulation system. Using bidirectional telemetry and commands, from a single extracorporeal transmitter, as many as 256 microstimulators could form the hardware basis for a complex functional-neuromuscular stimulation feedback-control system. Uses include stimulation of paralyzed muscle, therapeutic functional-neuromuscular stimulation, and neuromodulatory functions such as laryngeal stimulation and sleep apnea.

Study Type : Review
Additional Links

Print Options


Key Research Topics

Popular Threads

Sayer Ji
Founder of GreenMedInfo.com

Sign up for our Free Newsletter

A Community of 200,000+ Subscribers benefit from our latest research and news.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2017 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.