Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a
Abstract Title:

Investigation of the effect for bisphenol A on oxidative stress in human hepatocytes and its interaction with catalase.

Abstract Source:

Spectrochim Acta A Mol Biomol Spectrosc. 2019 May 22 ;221:117149. Epub 2019 May 22. PMID: 31153119

Abstract Author(s):

Xianmei Piao, Zhongrui Liu, Yangyang Li, Dahong Yao, Liwen Sun, Baihui Wang, Yan Ma, Libo Wang, Yan Zhang

Article Affiliation:

Xianmei Piao

Abstract:

Bisphenol A (BPA) as a chemical raw material, is widely used in the manufacturing process of daily necessities. It was reported that BPA could induce oxidative stress, and catalase (CAT) can protect the body from oxidative stress. In this paper, the effect of BPA on CAT was carried out in vitro and in vivo. Firstly, we studied the effects of BPA on oxidative stress, cell viability and CAT activity in human hepatocytes, and the results of vitro experiments show that the survival rate of hepatocytes significant decreased along with the increase of BPA concentration. And when the BPA concentration was 100 μM, the hepatocyte survival decreased by 13.2%, ROS levels in the cells increased by 85%. However, the activity of intracellular CAT increased with the increasing concentration of BPA in 24 h. The results of vivo experiments showed that the activity of CAT in the high-dose group decreased by 29.1% compared with the control group. The long-term effects of BPA on rats reduced the CAT activity in liver, which reduced the resistance to oxidative stress. Meanwhile, the interaction mechanism between BPA and CAT at the molecule level was performed via multiple spectra methods and molecular docking, and the results illustrated that the structural change of CAT is mainly due to the strong combination of BPA with the residues of Trp185. In addition, the interaction mechanism between BPA and CAT were hydrophobic and electrostatic effect. This study provided experimental evidence for better understanding the toxicity of BPA.

Study Type : Animal Study, In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.