Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Lovastatin-induced cardiac toxicity involves both oncotic and apoptotic cell death with the apoptotic component blunted by both caspase-2 and caspase-3 inhibitors.

Abstract Source:

Toxicol Appl Pharmacol. 2003 Dec 15 ;193(3):346-55. PMID: 14678744

Abstract Author(s):

Simon W Rabkin, Jennifer Y Kong

Article Affiliation:

University of British Columbia, Vancouver, British Columbia, V5Z 3J5 Canada. rabkin@interchange.ubc.ca

Abstract:

The objective of this study was to evaluate the cardiac toxicity of the HMG-CoA reductase inhibitors by testing the hypothesis that lovastatin induces apoptotic and/or oncotic cell death in the myocyte element of the heart and further that cell death is mediated through interruption of the mevalonate pathway and that apoptosis is induced through activation of caspase-2 and caspase-3. Cardiomyocytes were cultured from embryonic chick heart. Lovastatin-induced apoptosis in these cells was demonstrated by three independent techniques, namely (1) FACS analysis of low DNA content by propidium iodide (PI); (2) microscopic assessment for cellular changes of apoptosis; and (3) FACS analysis of cells stained with PI and fluorescein diacetate. Lovastatin produced a concentration-dependent increase in apoptotic cell death and 100 microM lovastatin showed over a 4-fold increase in apoptosis compared to control. Lovastatin also induced oncotic cell death, as there was a 2.5-fold increase in the amount of oncotic cell death compared to control. Lovastatin-induced apoptosis operated, in part, through the mevalonate pathway. The caspase-2 inhibitor z-VDVAD-fmk and the caspase-3 inhibitor Ac-DEVD-CHO reduced the extent of lovastatin-induced cardiac apoptosis. In contrast, lovastatin-induced oncosis was not only insensitive to these caspase-2 or -3 inhibitors but occurred through a mevalonate-independent mechanism of action. In summary, lovastatin-induced cardiotoxicity is complex and represents the sum of two distinct modes of cell death operating in part through the mevalonate pathway with the apoptotic component subject to modification by inhibitors of the initiator caspase, caspase-2, as well as the effector caspase, caspase-3.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.