Abstract Title:

Maitake beta-glucan enhances granulopoiesis and mobilization of granulocytes by increasing G-CSF production and modulating CXCR4/SDF-1 expression.

Abstract Source:

Int Immunopharmacol. 2009 Jun 30. PMID: 19573626

Abstract Author(s):

Koichi Ito, Yuki Masuda, Yoshihiko Yamasaki, Yoshinobu Yokota, Hiroaki Nanba

Abstract:

Previous studies have presented that Maitake beta-glucan (MD-Fraction) extracted from the fruit body of Grifola frondosa has an anti-tumor effect by activating the immune system. Recently, the stimulating effects of beta-glucans on hematopoiesis were identified as new characteristics of polysaccharides, possibly helping to relieve the immunosuppression which results from chemotherapies. We demonstrated that the production of granulocyte colony-stimulating factor (G-CSF) was significantly enhanced by MD-Fraction (8mg/kg, i.p.) in granulocytopenic model induced in mice using cyclophosphamide (200mg/kg, i.p.). In addition, MD-Fraction induced a biphasic increase in the number of granulocytes in the spleen. The mechanism for the increase in granulocytes on the early phase on day 1 might involve the increased mRNA expression of macrophage inflammatory protein-2 (MIP-2), in the splenic cells, thereby recruiting granulocytes into the spleen. Interestingly, a decline of myeloid progenitors in the bone marrow and an increase in granulocytes in the peripheral blood were observed on day 5, suggesting a mobilization of granulocytes and their progenitors from the bone marrow to the peripheral blood. We confirmed that a possible mechanism in which MD-Fraction promoted the mobilization of granulocytes and their progenitors from the bone marrow is down-regulating the expression of the chemokine receptor, CXCR4, and its ligand, stromal cell-derived factor 1 (SDF-1) in the bone marrow microenvironment. These results reveal a novel function of Maitake beta-glucan that enhances the granulopoiesis and mobilization of granulocytes and their progenitors by stimulating G-CSF production. This finding presents opportunities to develop new therapeutic strategies against the immunosuppression caused by chemotherapies in cancer patients.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.