Abstract Title:

Melatonin alters cell death processes in response to age-related oxidative stress in the brain of senescence-accelerated mice.

Abstract Source:

J Pineal Res. 2009 Jan;46(1):106-14. PMID: 19090913

Abstract Author(s):

Beatriz Caballero, Ignacio Vega-Naredo, Verónica Sierra, Covadonga Huidobro-Fernández, Clara Soria-Valles, David De Gonzalo-Calvo, Delio Tolivia, Mercé Pallás, Antonio Camins, María Josefa Rodríguez-Colunga, Ana Coto-Montes

Article Affiliation:

Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain.

Abstract:

We studied the effect of age and melatonin on cell death processes in brain aging. Senescence-accelerated prone mice 8 (SAMP8) and senescence-accelerated resistant mice (SAMR1) at 5 and 10 months of age were used as models of the study. Melatonin (10 mg/kg) or its vehicle (ethanol at 0.066%) was administered in the drinking water from 1 to 9 months of age. Neurodegeneration, previously shown in the aged brain of SAMP8 and SAMR1 at 10 months of age, may be due to a drop in age-related proteolytic activities (cathepsin D, calpains, and caspase-3). Likewise, lack of apoptotic and macroautophagic processes were found, without apparent modification by melatonin. However, the caspase-independent cell death, owing to high p53 and apoptosis-inducing factor (AIF) levels, might be an alternative pathway of cell death in the aged brain. The main effects of melatonin treatment were observed in the aged SAMR1 mice; in this strain we observed a marked increase in antioxidant activity (catalase and superoxide dismutase). Likewise, a key antioxidant role of apoptosis-related proteins, Bcl-2 and AIF, was suggested in the aged brain of SAM mice, which was clearly influenced by melatonin. Moreover, the age-related increase of lysosomal activity of cathepsin B and a lysosomal membrane-associated protein 2 supports the possibility of the maintenance of lysosomal viability in addition to age-related impairments of the proteolytic or macroautophagic activities. The effectiveness of melatonin against the oxidative stress-related impairments and apoptosis during the aging process is, once more, corroborated in this article.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.