Abstract Title:

Non-thermal effects in the microwave induced unfolding of proteins observed by chaperone binding.

Abstract Source:

Bioelectromagnetics. 2008 May ;29(4):324-30. PMID: 18240290

Abstract Author(s):

Doaa F George, Marcela M Bilek, David R McKenzie

Article Affiliation:

School of Physics, University of Sydney, New South Wales, Australia.


We study the effect of microwaves at 2,450 MHz on protein unfolding using surface plasmon resonance sensing. Our experimental method makes use of the fact that unfolding proteins tend to bind to chaperones on their unfolding pathway and this attachment is readily monitored by surface plasmon resonance. We use the protein citrate synthase (CS) for this study as it shows strong binding to the chaperone alpha crystallin when stressed by exposure to excess temperature. The results of microwave heating are compared with the effect of ambient heating and a combination of ambient and microwave heating to the same final temperature. We study the temperature distributions during the heating process. We show that microwaves cause a significantly higher degree of unfolding than conventional thermal stress for protein solutions heated to the same maximum temperature.

Study Type : Environmental
Additional Links
Anti Therapeutic Actions : Microwave Cooking : CK(49) : AC(28)

Print Options


Login to Comment

Commenting is limited to Members only. If you are already a member, please login to post a comment. If you do not have a member account and would like to become a member, please click here to begin the process to become a member.

Key Research Topics

Popular Threads

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2016 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.