Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 250,000 with essential news, research & healthy tips, daily.

Easy Turmeric recipes + The Dark Side of Wheat

Abstract Title:

Accelerated hematopoietic stem cell aging in a mouse model of dyskeratosis congenita responds to antioxidant treatment.

Abstract Source:

Aging Cell. 2011 Apr;10(2):338-48. Epub 2011 Feb 21. PMID: 21241452

Abstract Author(s):

Bai-Wei Gu, Jian-Meng Fan, Monica Bessler, Philip J Mason

Article Affiliation:

Division of Hematology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA Division of Hematology, Department of Pediatrics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.

Abstract:

Mutations in DKC1, encoding telomerase associated protein dyskerin, cause X-linked dyskeratosis congenita (DC), a bone marrow (BM) failure, and cancer susceptibility syndrome. Decreased accumulation of telomerase RNA resulting in excessive telomere shortening and premature cellular senescence is thought to be the primary cause of disease in X-linked DC. Affected tissues are those that require constant renewal by stem cell activity. We previously showed that in Dkc1(Δ15) mice, which contain a mutation that is a copy of a human mutation causing DC, mutant cells have a telomerase-dependent proliferative defect and increased accumulation of DNA damage in the first generation before the telomeres are short. We now demonstrate the presence of the growth defect in Dkc1(Δ15) mouse embryonic fibroblasts in vitro and show that accumulation of DNA damage and levels of reactive oxygen species increase with increasing population doublings. Treatment with the antioxidant, N-acetyl cysteine (NAC), partially rescued the growth disadvantage of mutant cells in vitro andin vivo. Competitive BM repopulation experiments showed that the Dkc1(Δ15) mutation is associated with a functional stem cell defect that becomes more severe with increasing age, consistent with accelerated senescence, a hallmark of DC hematopoiesis. This stem cell phenotype was partially corrected by NAC treatment. These results suggest that a pathogenic Dkc1 mutation accelerates stem cell aging, that increased oxidative stress might play a role in the pathogenesis of X-linked DC, and that some manifestations of DC may be prevented or delayed by antioxidant treatment.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 250,000 with essential news, research & healthy tips, daily.

Easy Turmeric recipes + The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2017 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.