Abstract Title:

Role of mitochondrial membrane permeability transition in p-hydroxybenzoate ester-induced cytotoxicity in rat hepatocytes.

Abstract Source:

Biochem Pharmacol. 1999 Sep 1;58(5):811-6. PMID: 10449191

Abstract Author(s):

Y Nakagawa, G Moore

Article Affiliation:

Department of Toxicology, Tokyo Metropolitan Research Laboratory of Public Health, Japan. yoshio@tokyo-eiken.go.jp

Abstract:

The relationship between mitochondrial membrane permeability transition (MPT) and the toxic effects of the alkyl esters of p-hydroxybenzoic acid (parabens) has been studied in mitochondria and hepatocytes isolated from rat liver. MPT has been proposed as a common final pathway in acute cell death through mitochondrial dysfunction. In isolated mitochondria, propyl-paraben (0.1 to 0.5 mM) in the presence of Ca2+ (50 microM) elicited a concentration-dependent induction of mitochondrial swelling dependent on MPT. This was prevented by pretreatment with a specific inhibitor of MPT, cyclosporin A (0.2 microM). For the other parabens tested, the induction of MPT depended on the relative elongation of alkyl side-chains in their molecular structure and was associated with the partition coefficients. In contrast, the induction caused by p-hydroxybenzoic acid was more potent than that of methyl- or ethyl-paraben. The pretreatment of freshly isolated hepatocytes with cyclosporin A (5 microM) and trifluoperazine (10 microM), which inhibit MPT in a synergistic manner, partially but not completely prevented propyl-paraben (1 mM; plus diazinon, 100 microM)-induced cell death, ATP loss, and decreased mitochondrial membrane potential. These results suggest that the onset of paraben-induced cytotoxicity is linked to mitochondrial failure dependent upon induction of MPT accompanied by the mitochondrial depolarization and depletion of cellular ATP through uncoupling of oxidative phosphorylation.

Study Type : In Vitro Study

Print Options


Disqus

Login to Comment

Commenting is limited to Members only. If you are already a member, please login to post a comment. If you do not have a member account and would like to become a member, please click here to begin the process to become a member.