Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Depression: 21st Century Solutions + The Dark Side of Wheat

n/a
Article Publish Status: FREE
Abstract Title:

Photobiomodulation Enhances the Angiogenic Effect of Mesenchymal Stem Cells to Mitigate Radiation-Induced Enteropathy.

Abstract Source:

Int J Mol Sci. 2019 Mar 5 ;20(5). Epub 2019 Mar 5. PMID: 30841658

Abstract Author(s):

Kyuchang Kim, Janet Lee, Hyosun Jang, Sunhoo Park, Jiyoung Na, Jae Kyung Myung, Min-Jung Kim, Won-Suk Jang, Sun-Joo Lee, Hyewon Kim, Hyunwook Myung, JiHoon Kang, Sehwan Shim

Article Affiliation:

Kyuchang Kim

Abstract:

Radiation-induced enteropathy remains a major complication after accidental or therapeutic exposure to ionizing radiation. Recent evidence suggests that intestinal microvascular damage significantly affects the development of radiation enteropathy. Mesenchymal stem cell (MSC) therapy is a promising tool to regenerate various tissues, including skin and intestine. Further, photobiomodulation (PBM), or low-level light therapy, can accelerate wound healing, especially by stimulating angiogenesis, and stem cells are particularly susceptible to PBM. Here, we explored the effect of PBM on the therapeutic potential of MSCs for the management of radiation enteropathy. In vitro, using human umbilical cord blood-derived MSCs, PBM increased proliferation and self-renewal. Intriguingly, the conditioned medium from MSCs treated with PBM attenuated irradiation-induced apoptosis and impaired tube formation in vascular endothelial cells, and these protective effects were associated with the upregulation of several angiogenic factors. In a mouse model of radiation-induced enteropathy, treatment with PBM-preconditioned MSCs alleviated mucosal destruction, improved crypt cell proliferation and epithelial barrier functions, and significantly attenuated the loss of microvascular endothelial cells in the irradiated intestinal mucosa. This treatment also significantly increased angiogenesis in the lamina propria. Together, we suggest that PBM enhances the angiogenic potential of MSCs, leading to improved therapeutic efficacy for the treatment of radiation-induced enteropathy.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Depression: 21st Century Solutions + The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.