n/a
Article Publish Status: FREE
Abstract Title:

Protective effect of paeoniflorin against oxidative stress in human retinal pigment epithelium in vitro.

Abstract Source:

Mol Vis. 2011 ;17:3512-22. Epub 2011 Dec 29. PMID: 22219646

Abstract Author(s):

Xie Wankun, Yu Wenzhen, Zhao Min, Zhou Weiyan, Chen Huan, Du Wei, Huang Lvzhen, Yongsheng Xu, Li Xiaoxin

Article Affiliation:

Xie Wankun

Abstract:

PURPOSE: This study was conducted to determine whether paeoniflorin (PF) could prevent H₂O₂-induced oxidative stress in ARPE-19 cells and to elucidate the molecular pathways involved in this protection.

METHODS: Cultured ARPE-19 cells were subjected to oxidative stress with H₂O₂ in the presence and absence of PF. The preventive effective of PF on reactive oxygen species (ROS) production and retinal pigment epithelium (RPE) cell death induced by H₂O₂ was determined by 2',7'- dichlorodihydrofluorescein diacetate (H₂DCFDA) fluorescence and 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyl tetrazolium bromide (MTT) assay. The ability of PF to protect RPE cells against ROS-mediated apoptosis was assessed by caspase-3 activity and 4', 6-diamidino-2-phenylindole (DAPI) staining. Furthermore, the protective effect of PF via the mitogen-activated protein kinase (MAPK)pathway was determined by western blot analysis.

RESULTS: PF protected ARPE-19 cells from H₂O₂-induced cell death with low toxicity. H₂O₂-induced oxidative stress increased ROS production and caspase-3 activity, which was significantly inhibited by PF in a dose-dependent manner. Pretreatment with PF attenuated H₂O₂-induced p38MAPK and extracellular signal regulated kinase (ERK) phosphorylation in human RPE cells, which contributed to cell viability in ARPE-19 cells.

CONCLUSIONS: This is the first report to show that PF can protect ARPE-19 cells from the cellular apoptosis induced by oxidative stress. The results of this study open new avenues for the use of PF in treatment of ocular diseases, such as age-related macular degeneration (AMD), where oxidative stress plays a major role in disease pathogenesis.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.