n/a
Article Publish Status: FREE
Abstract Title:

Anthocyanin-rich purple corn extract inhibit diabetes-associated glomerular angiogenesis.

Abstract Source:

PLoS One. 2013 ;8(11):e79823. Epub 2013 Nov 20. PMID: 24278186

Abstract Author(s):

Min-Kyung Kang, Soon Sung Lim, Jae-Yong Lee, Kyung Mok Yeo, Young-Hee Kang

Article Affiliation:

Min-Kyung Kang

Abstract:

Diabetic nephropathy (DN) is one of the major diabetic complications and the leading cause of end-stage renal disease. Abnormal angiogenesis results in new vessels that are often immature and play a pathological role in DN, contributing to renal fibrosis and disrupting glomerular failure. Purple corn has been utilized as a daily food and exerts disease-preventive activities. This study was designed to investigate whether anthocyanin-rich purple corn extract (PCE) prevented glomerular angiogenesis under hyperglycemic conditions. Human endothelial cells were cultured in conditioned media of mesangial cells exposed to 33 mM high glucose (HG-HRMC-CM). PCE decreased endothelial expression of vascular endothelial growth factor (VEGF) and hypoxia inducible factor (HIF)-1α induced by HG-HRMC-CM. Additionally, PCE attenuated the induction of the endothelial marker of platelet endothelial cell adhesion molecule (PECAM)-1 and integrin β3 enhanced in HG-HRMC-CM. Endothelial tube formation promoted by HG-HRMC-CM was disrupted in the presence of PCE. In the in vivo study employing db/db mice treated with 10 mg/kg PCE for 8 weeks, PCE alleviated glomerular angiogenesis of diabetic kidneys by attenuating the induction of VEGF and HIF-1α. Oral administration of PCE retarded the endothelial proliferation in db/db mouse kidneys, evidenced by its inhibition of the induction of vascular endothelium-cadherin, PECAM-1 and Ki-67. PCE diminished the mesangial and endothelial induction of angiopoietin (Angpt) proteins under hypeglycemic conditions. The induction and activation of VEGF receptor 2 (VEGFR2) were dampened by treating PCE to db/db mice. These results demonstrate that PCE antagonized glomerular angiogenesis due to chronic hyperglycemia and diabetes through disturbing the Angpt-Tie-2 ligand-receptor system linked to renal VEGFR2 signaling pathway. Therefore, PCE may be a potent therapeutic agent targeting abnormal angiogenesis in DN leading to kidney failure.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.