Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Article Publish Status: FREE
Abstract Title:

Quercetin inhibits Cr(VI)-induced malignant cell transformation by targeting miR-21-PDCD4 signaling pathway.

Abstract Source:

Oncotarget. 2016 Jun 17. Epub 2016 Jun 17. PMID: 27344173

Abstract Author(s):

Poyil Pratheeshkumar, Young-Ok Son, Sasidharan Padmaja Divya, Lei Wang, Lilia Turcios, Ram Vinod Roy, John Andrew Hitron, Donghern Kim, Jin Dai, Padmaja Asha, Zhuo Zhang, Xianglin Shi

Article Affiliation:

Poyil Pratheeshkumar

Abstract:

Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Inhibition of Cr(VI)-induced carcinogenesis by a dietary antioxidant is a novel approach. Quercetin is one of the most abundant dietary flavonoids widely present in many fruits and vegetables, possesses potent antioxidant and anticancer properties. MicroRNA-21 (miR-21) is a key oncomiR significantly elevated in the majority of human cancers that exerts its oncogenic activity by targeting the tumor suppressor gene programmed cell death 4 (PDCD4). The present study examined the effect of quercetin on the inhibition of Cr(VI)-induced malignant cell transformation and the role of miR-21-PDCD4 signaling involved. Our results showed that quercetin decreased ROS generation induced by Cr(VI) exposure in BEAS-2B cells. Chronic Cr(VI) exposure induced malignant cell transformation, increased miR-21 expression and caused inhibition of PDCD4, which were significantly inhibited by the treatment of quercetin in a dose dependent manner. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of quercetin showed reduced tumor incidence compared to Cr(VI) alone treated group. Stable knockdown of miR-21 and overexpression of PDCD4 or catalase in BEAS-2B cells suppressed Cr(VI)-induced malignant transformation and tumorigenesis. Taken together, these results demonstrate that quercetin is able to protect BEAS-2B cells from Cr(VI)-induced carcinogenesis by targeting miR-21-PDCD4 signaling.

Study Type : Animal Study, In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.