Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 250,000 with essential news, research & healthy tips, daily.

Easy Turmeric recipes + The Dark Side of Wheat

Abstract Title:

Mammography-oncogenecity at low doses.

Abstract Source:

J Radiol Prot. 2009 Jun;29(2A):A123-32. Epub 2009 May 19. PMID: 19454801

Abstract Author(s):

G J Heyes, A J Mill, M W Charles

Article Affiliation:

Department of Medical Physics, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK.

Abstract:

Controversy exists regarding the biological effectiveness of low energy x-rays used for mammography breast screening. Recent radiobiology studies have provided compelling evidence that these low energy x-rays may be 4.42 +/- 2.02 times more effective in causing mutational damage than higher energy x-rays. These data include a study involving in vitro irradiation of a human cell line using a mammography x-ray source and a high energy source which matches the spectrum of radiation observed in survivors from the Hiroshima atomic bomb. Current radiation risk estimates rely heavily on data from the atomic bomb survivors, and a direct comparison between the diagnostic energies used in the UK breast screening programme and those used for risk estimates can now be made. Evidence highlighting the increase in relative biological effectiveness (RBE) of mammography x-rays to a range of x-ray energies implies that the risks of radiation-induced breast cancers for mammography x-rays are potentially underestimated by a factor of four. A pooled analysis of three measurements gives a maximal RBE (for malignant transformation of human cells in vitro) of 4.02 +/- 0.72 for 29 kVp (peak accelerating voltage) x-rays compared to high energy electrons and higher energy x-rays. For the majority of women in the UK NHS breast screening programme, it is shown that the benefit safely exceeds the risk of possible cancer induction even when this higher biological effectiveness factor is applied. The risk/benefit analysis, however, implies the need for caution for women screened under the age of 50, and particularly for those with a family history (and therefore a likely genetic susceptibility) of breast cancer. In vitro radiobiological data are generally acquired at high doses, and there are different extrapolation mechanisms to the low doses seen clinically. Recent low dose in vitro data have indicated a potential suppressive effect at very low dose rates and doses. Whilst mammography is a low dose exposure, it is not a low dose rate examination, and protraction of dose should not be confused with fractionation. Although there is potential for a suppressive effect at low doses, recent epidemiological data, and several international radiation risk assessments, continue to promote the linear no-threshold (LNT) model. Finally, recent studies have shown that magnetic resonance imaging (MRI) is more sensitive than mammography in detecting invasive breast cancer in women with a genetic sensitivity. Since an increase in the risk associated with mammographic screening would blur the justification of exposure for this high risk subgroup, the use of other (non-ionising) screening modalities is preferable.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 250,000 with essential news, research & healthy tips, daily.

Easy Turmeric recipes + The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2017 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.