Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Depression: 21st Century Solutions + The Dark Side of Wheat

n/a
Article Publish Status: FREE
Abstract Title:

Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways.

Abstract Source:

Redox Biol. 2016 Nov 4 ;11:1-11. Epub 2016 Aug 4. PMID: 27835779

Abstract Author(s):

Chao Zhang, Chuwen Li, Shenghui Chen, Zhiping Li, Xuejing Jia, Kai Wang, Jiaolin Bao, Yeer Liang, Xiaotong Wang, Meiwan Chen, Peng Li, Huanxing Su, Jian-Bo Wan, Simon Ming Yuen Lee, Kechun Liu, Chengwei He

Article Affiliation:

Chao Zhang

Abstract:

Berberine (BBR) is a renowned natural compound that exhibits potent neuroprotective activities. However, the cellular and molecular mechanisms are still unclear. Hormesis is an adaptive mechanism generally activated by mild oxidative stress to protect the cells from further damage. Many phytochemicals have been shown to induce hormesis. This study aims to investigate whether the neuroprotective activity of BBR is mediated by hormesis and the related signaling pathways in 6-OHDA-induced PC12 cells and zebrafish neurotoxic models. Our results demonstrated that BBR induced a typical hormetic response in PC12 cells, i.e. low dose BBR significantly increased the cell viability, while high dose BBR inhibited the cell viability. Moreover, low dose BBR protected the PC12 cells from 6-OHDA-induced cytotoxicity and apoptosis, whereas relatively high dose BBR did not show neuroprotective activity. The hormetic and neuroprotective effects of BBR were confirmed to be mediated by up-regulated PI3K/AKT/Bcl-2 cell survival and Nrf2/HO-1 antioxidative signaling pathways. In addition, low dose BBR markedly mitigated the 6-OHDA-induced dopaminergic neuron loss and behavior movement deficiency in zebrafish, while high dose BBR only slightly exhibited neuroprotective activities. These results strongly suggested that the neuroprotection of BBR were attributable to the hormetic mechanisms via activating cell survival and antioxidative signaling pathways.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get two FREE E-Books

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Depression: 21st Century Solutions + The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.