Abstract Title:

Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines.

Abstract Source:

Mol Cancer Ther. 2007 Mar;6(3):1013-21. Epub 2007 Mar 5. PMID: 17339367

Abstract Author(s):

Allison Pledgie-Tracy, Michele D Sobolewski, Nancy E Davidson

Abstract:

Sulforaphane, an isothiocyanate found in cruciferous vegetables, has been shown to induce phase 2 detoxication enzymes and inhibit the growth of chemically induced mammary tumors in rats, although the exact mechanisms of action of sulforaphane are not understood. In this study, we evaluated the effects of sulforaphane on cell growth and death in several human breast cancer cell lines and examined the hypothesis that sulforaphane acts as a histone deacetylase (HDAC) inhibitor in these cell lines. Sulforaphane treatment inhibited cell growth, induced a G(2)-M cell cycle block, increased expression of cyclin B1, and induced oligonucleosomal DNA fragmentation in the four human breast cancer cell lines examined, MDA-MB-231, MDA-MB-468, MCF-7, and T47D cells. Activation of apoptosis by sulforaphane in MDA-MB-231 cells seemed to be initiated through induction of Fas ligand, which resulted in activation of caspase-8, caspase-3, and poly(ADP-ribose) polymerase, whereas apoptosis in the other breast cancer cell lines was initiated by decreased Bcl-2 expression, release of cytochrome c into the cytosol, activation of caspase-9 and caspase-3, but not caspase-8, and poly(ADP-ribose) polymerase cleavage. Sulforaphane inhibited HDAC activity and decreased the expression of estrogen receptor-alpha, epidermal growth factor receptor, and human epidermal growth factor receptor-2 in each cell line, although no change in the acetylation of H3 or H4 was seen. These data suggest that sulforaphane inhibits cell growth, activates apoptosis, inhibits HDAC activity, and decreases the expression of key proteins involved in breast cancer proliferation in human breast cancer cells. These results support testing sulforaphane in vivo and warrant future studies examining the clinical potential of sulforaphane in human breast cancer.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.