n/a
Abstract Title:

Suppressive effects of neonatal bisphenol A on the neuroendocrine system.

Abstract Source:

Toxicol Ind Health. 2018 Jan 1:748233718757082. Epub 2018 Jan 1. PMID: 29656705

Abstract Author(s):

R G Ahmed, G H Walaa, F S Asmaa

Article Affiliation:

R G Ahmed

Abstract:

The aim of this study was to assess the effects of neonatal bisphenol A (BPA) administration on neuroendocrine features (the thyroid-brain axis). BPA (20 or 40µg/kg) was orally administered to juvenile male albino rats ( Rattus norvegicus) from postnatal days (PNDs) 15 to 30. Both doses resulted in lower serum thyroxine (T4), triiodothyronine (T3), and growth hormone levels and higher thyrotropin level than the control levels at PND 30. In the neonatal cerebellum and cerebrum, vacuolation, pyknosis, edema, degenerative changes, and reductions in the size and number of the cells were observed in both treated groups. Alternatively, elevations in oxidative markers (lipid peroxidation, nitric oxide, and hydrogen peroxide [HO]) at both dose levels were recorded at PND 30, along with decreased activities of antioxidant markers (ascorbic acid, total thiol [t-SH], glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and catalase) with respect to control levels. Thus, the BPA-induced hypothyroid state may disturb the neonatal thyroid-brain axis via production of free radicals, and this could damage the plasma membrane and cellular components, delaying cerebrum and cerebellum development.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.