Abstract Title:

In Silico Analysis of Green Tea Polyphenols as Inhibitors of AChE and BChE enzymes in Alzheimer's disease Treatment.

Abstract Source:

CNS Neurol Disord Drug Targets. 2016 Mar 21. Epub 2016 Mar 21. PMID: 26996169

Abstract Author(s):

Babar Ali, Qazi Mohammad Sajid Jamal, Saiba Sams, Naser A Al-Wabel, Mughees Uddin Siddiqui, Mohammad A Alzohairy, Mohammed A Al Karaawi, Kavindra Kumar Kesari, Gohar Mushtaq, Mohammad A Kamal

Article Affiliation:

Babar Ali

Abstract:

Alzheimer's disease (AD) is the most frequent cause of dementia, especially in the elderly. AD is the most common progressive neurodegenerative disorder, which involves the loss of structure and function of cholinergic neurons. Moreover, if these neuronal changes cannot be compensated, this may ultimately lead to neurodegenerative processes. Therefore, most of the drug therapies are based on the cholinergic hypothesis, which suggests that AD begins as a deficiency in the production of the neurotransmitter acetylcholine. In this context, many inhibitors play an important role in AD treatment among which acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) have more potential in the treatment process of AD. In this study, we selected tea polyphenols of green tea which are reported as AChE and BChE inhibitors used in the treatment of AD. The molecular docking results revealed that polyphenols exhibit interactions and inhibit by binding with AChE and BChE. The amount of energy to bind with AChE and BChE needed by Epigallocatechin-3-gallate was lowest at about -14.45 and -13.30 kcal/mol, respectively. All compounds showed binding energy values ranging between -14.45 to -9.75 kcal/mol for both types of enzymes. The present docking study suggests that tea polyphenols inhibit AChE as well as BChE and enhance the cholinergic neurotransmission by prolonging the time. However, AChE molecules remain in the synaptic cleft. In consideration to these findings, cholinesterase inhibitors are suggested as the standard drugs for the treatment of AD.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.