Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Tea Polyphenols Protect Against Methylmercury-Induced Cell Injury in Rat Primary Cultured Astrocytes, Involvement of Oxidative Stress and Glutamate Uptake/Metabolism Disorders.

Abstract Source:

Mol Neurobiol. 2015 May 8. Epub 2015 May 8. PMID: 25952541

Abstract Author(s):

Wei Liu, Zhaofa Xu, Tianyao Yang, Yu Deng, Bin Xu, Shu Feng

Article Affiliation:

Wei Liu

Abstract:

Methylmercury (MeHg) is an extremely dangerous environmental contaminant, accumulating preferentially in CNS and causing a series of cytotoxic effects. However, the precise mechanisms are still incompletely understood. The current study explored the mechanisms that contribute to MeHg-induced cell injury focusing on the oxidative stress and Glu uptake/metabolism disorders in rat primary cultured astrocytes. Moreover, the neuroprotective effects of tea polyphenols (TP), a natural antioxidant, against MeHg cytotoxicity were also investigated. Astrocytes were exposed to 0, 2.5, 5, 10, and 20 μM MeHgCl for 6-30 h, or pretreated with 50, 100, 200, and 400 μM TP for 1-12 h; cell viability and LDH release were then determined. For further experiments, 50, 100, and 200 μM of TP pretreatment for 6 h followed by 10 μM MeHgCl for 24 h were performed for the examination of the responses of astrocytes, specifically addressing NPSH levels, ROS generation, ATPase activity, the expressions of Nrf2 pathway as well as Glu metabolism enzyme GS and Glu transporters (GLAST and GLT-1). Exposure of MeHg resulted in damages of astrocytes, which were shown by a loss of cell viability, andsupported by high levels of LDH release, morphological changes, apoptosis rates, and NPSH depletion. In addition, astrocytes were sensitive to MeHg-mediated oxidative stress, a finding that is consistent with ROS overproduction; Nrf2 as well as its downstream genes HO-1 and γ-GCSh were markedly upregulated. Moreover, MeHg significantly inhibited GS activity, as well as expressions of GS, GLAST, and GLT-1. On the contrary, pretreatment with TP presented a concentration-dependent prevention against MeHg-mediated cytotoxic effects of astrocytes. In conclusion, the findings clearly indicated thatMeHg aggravated oxidative stress and Glu uptake/metabolism dysfunction in astrocytes. TP possesses some abilities to prevent MeHg cytotoxicity through its antioxidative properties.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.