n/a
Abstract Title:

Exposure characterization of three major insecticide lines in urine of young children in Japan-neonicotinoids, organophosphates, and pyrethroids.

Abstract Source:

Environ Res. 2016 May ;147:89-96. Epub 2016 Feb 6. PMID: 26855126

Abstract Author(s):

Aya Osaka, Jun Ueyama, Takaaki Kondo, Hiroshi Nomura, Yuka Sugiura, Isao Saito, Kunihiko Nakane, Ayuko Takaishi, Hiroko Ogi, Shinya Wakusawa, Yuki Ito, Michihiro Kamijima

Article Affiliation:

Aya Osaka

Abstract:

The use of neonicotinoid (NEO) insecticides has increased over the past decade not only in Japan but also worldwide, while organophosphate (OP) and pyrethroid (PYR) insecticides are still conventionally used in agriculture and domestic pest control. However, limited data are currently available on the NEO exposure levels, especially in children, who are particularly vulnerable to environmental toxicants. Thus, the purpose of this study was to characterize the exposure to NEOs, as well as OPs and PYRs, in three-year-old Japanese children by assessing the range, distribution, and seasonal differences of the urinary concentrations of seven NEOs (acetamiprid, clothianidin, dinotefuran, thiacloprid, thiamethoxam, imidacloprid, and nitenpyram); four OP metabolites (dialkylphosphates [DAPs]), including dimethylphosphate, dimethylthiophosphate, diethylphosphate, and diethylthiophosphate; and three PYR metabolites (3-phenoxybenzoic acid, trans-chrysanthemumdicarboxylic acid, and 3-(2,2-dichlorovinyl)-2,2- dimethylcyclopropane carboxylic acid). Urine samples were collected from 223 children (108 males and 115 females) in the summer and winter months. The detection rates of NEOs were 58% for dinotefuran, 25% for thiamethoxam, 21% for nitenpyram, and<16% for all other NEOs. The median and maximum concentrations of the sum of the seven NEOs (ΣNEO) were 4.7 and 370.2nmol/g creatinine, respectively. Urinary ΣNEO, dimethylphosphate, and all PYR metabolite concentrations were significantly higher in the summer than in the winter (p<0.05). The creatinine-adjusted concentration ofΣNEO significantly correlated with those of all DAPs (p<0.05) but not with those of the PYR metabolites. Moreover, the NEO-detected group showed higher urinaryΣDAP (sum of four OP metabolites) concentrations than the group without NEO detection. These findings suggest that children in Japan are environmentally exposed to the three major insecticide lines, and that the daily exposure sources of NEOs are common to those of OPs.

Study Type : Human Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.