n/a

Abstract Title:

Cortical and spinal excitability in patients with multiple sclerosis and spasticity after oromucosal cannabinoid spray.

Abstract Source:

J Neurol Sci. 2016 Nov 15 ;370:263-268. Epub 2016 Aug 28. PMID: 27772772

Abstract Author(s):

Giovanna Squintani, Francesco Donato, Mara Turri, Luciano Deotto, Francesco Teatini, Giuseppe Moretto, Roberto Erro

Article Affiliation:

Giovanna Squintani

Abstract:

BACKGROUND: Delta-9-tetrahydrocannabinol and cannabidiol (THC:CBD) oromucosal spray (Sativex®) has been recently approved for the management of treatment-resistant multiple sclerosis (MS) spasticity. Although the symptomatic relief of Sativex® on MS-spasticity has been consistently demonstrated, the pathogenetic implications remain unclear and the few electrophysiological studies performed to address this topic yielded controversial results. We therefore aimed to investigate the mechanisms underpinning the modulation of spastic hypertonia by Sativex®, at both central and spinal levels, through an extensive neurophysiological battery in patients with MS.

METHODS: Nineteen MS patients with treatment-resistant spasticity were recruited. Before and after 4weeks of treatment with Sativex® patients were clinically assessed with the Modified Ashworth Scale (MAS) and underwent a large neurophysiological protocol targeting measures of excitability and inhibition at both cortical [e.g., intracortical facilitation (ICF), short (SICI) and long (LICI) intracortical inhibition, cortical silent period (CSP)] and spinal level [e.g., H-reflex, H/M ratio and recovery curve of the H-reflex (HRC)]. A group of 19 healthy subjects served as controls.

RESULTS: A significant reduction of the MAS score after 4weeks of Sativex® treatment was detected. Before treatment, an increase in the late facilitatory phase of HRC was recorded in patients compared to the control group, that normalised post treatment. At central level, SICI and LICI were significantly higher in patients compared to healthy subjects. After therapy, asignificant strengthening of inhibition (e.g. reduced LICI) and a non-significant facilitation (e.g. marginally increased ICF) occurred, suggesting a modulatory effect of Sativex® on different pathways, predominantly of inhibitory type. Sativex® treatment was well tolerated, with only 3 patients complaining about dizziness and bitter taste in their mouth.

DISCUSSION: Our results confirm the clinical benefit of Sativex® on spastic hypertonia and demonstrate that it might modulate both cortical and spinal circuits, arguably in terms of both excitation and inhibition. We suggest that the clinical benefit was likely related to a net increase of inhibition at cortical level that, in turn, might have influenced spinal excitability.

Study Type : Human Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.