n/a
Article Publish Status: FREE
Abstract Title:

Anti-pseudomonad Activity of Manuka Honey and Antibiotics in a SpecializedModel Simulating Cystic Fibrosis Lung Infection.

Abstract Source:

Front Microbiol. 2019 ;10:869. Epub 2019 Apr 24. PMID: 31105667

Abstract Author(s):

Aled E L Roberts, Lydia C Powell, Manon F Pritchard, David W Thomas, Rowena E Jenkins

Article Affiliation:

Aled E L Roberts

Abstract:

causes problematic chronic lung infections in those suffering from cystic fibrosis. This is due to its antimicrobial resistance mechanisms and its ability to form robust biofilm communities with increased antimicrobial tolerances. Using novel antimicrobials or repurposing current ones is required in order to overcome these problems. Manuka honey is a natural antimicrobial agent that has been used for many decades in the treatment of chronic surface wounds with great success, particularly those infected with. Here we aim to determine whether the antimicrobial activity of manuka honey could potentially be repurposed to inhibit pulmonaryinfections using twomodels.isolates (= 28) from an international panel were tested for their susceptibility to manuka honey and clinically relevant antibiotics (ciprofloxacin, ceftazidime, and tobramycin), alone and in combination, using conventional antimicrobial susceptibility testing (AST). To increase clinical applicability, twoporcine lung (EVPL) models (using alveolar and bronchiolar tissue) were used to determine the anti-biofilm effects of manuka honey alone and in combination with antibiotics. Allisolates were susceptible to manuka honey, however, varying incidences of resistance were seen against antibiotics. The combination of sub-inhibitory manuka honey and antibiotics using conventional AST had no effect on activity against the majority of isolates tested. Using the twomodels, 64% (w/v) manuka honey inhibited many of the isolates where abnormally high concentrations of antibiotics could not. Typically, combinations of both manuka honey and antibiotics had increased antimicrobial activity. These results highlight the potential of manuka honey as a future antimicrobial for the treatment of pulmonaryisolates, clearing potential infection reservoirs within the upper airway.

Study Type : Animal Study, In Vitro Study

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.