GMO Insulin Causes Type 1 Diabetes in Type 2 Diabetics, Study Finds

GMO Insulin Causes Type 1 Diabetes in Type 2 Diabetics, Study Finds

A groundbreaking new study finds synthetic (GMO) insulin is capable of rapidly producing type 1 diabetes in type 2 diabetics.

Last year, we reported on the dangers of insulin therapy for type 2 diabetics, following the publication of a study comprised of almost 85,000 type 2 diabetic patients that found insulin monotherapy doubled their risk of all-cause mortality, in addition to significantly increasing their risk for diabetes-related complications and cancer. Insulin monotherapy resulted in:

  • 2.0 times more myocardial infarctions.
  • 1.7 time more major adverse cardiac events
  • 1.4 time more strokes
  • 3.5 times more renal complications
  • 2.1 time more neuropathy
  • 1.2 times more eye complications
  • 1.4 times more cancer
  • 2.2 times more deaths

Now, a new study published in the Journal of Clinical Endocrinology & Metabolism titled, "Insulin administration may trigger type 1 diabetes in Japanese type 2 diabetes patients with type 1 diabetes high-risk HLA class II and the insulin gene VNTR genotype," is shedding light on a possible explanation for why insulin treatment may accelerate morbidity and mortality in type 2 diabetics. The study revealed that giving genetically susceptible type 2 diabetes patients recombinant insulin can trigger their bodies to target their own insulin producing cells for autoimmune destruction, effectively producing 'double diabetes': type 1 and type 2, as a result.

The Japanese study took 6 patients (4 men and 2 women) with type 2 diabetes, none of whom had previously received insulin therapy nor had markers for autoantibodies to their own insulin (e.g. GAD65). All patients were found to have the type 1 diabetes susceptibility gene known as type 1 diabetes high risk HLA class II (IDDM1), which is considered to play a role in up to 50% of type 1 diabetes cases, and the insulin gene VNTR genotype (IDDM2), believed to play a key role in susceptibility to type 2 diabetes.

After recombinant insulin administration their blood glucose control deteriorated, and their own insulin producing beta cells – as measured by declining C-peptide levels (a marker for the production of natural insulin) – decreased insulin production to a deficiency levels commonly found in type 1 diabetes patients. The average time it took for the patients to develop full blown type 1 diabetes was 7.7 months, with one patient developing the condition within 1.1 months.

Further tests revealed that the patients had antibodies against their own pancreatic islet cells (the cells responsible for producing insulin), insulin allergy or increased levels of insulin antibody. Additionally, 2 of 4 cases were found to have GAD-reactive and insulin peptide reactive Th1 cells, typical markers of autoimmunity induced type 1 diabetes.

The researchers concluded from their findings:

"The findings suggest that insulin administration may have triggered TIDM in patients with T2DM. IDDM1 and IDDM 2 as well as autoreactive T cells may contribute to the development of T1DM. Developing insulin-triggered T1DM if a patient's blood glucose control acutely deteriorates after insulin administration should be carefully considered."

The researchers also pointed out that there are a number trials underway to produce vaccines containing insulin intended to induce a 'tolerogenic immune response' and therefore ameliorate autoimmune type 1 diabetes.[1] Clearly, however, their findings run contrary to this expectation, revealing that it is possible that introducing exogenous forms of insulin may stimulate the opposite reaction and induced autoimmunity against the hormone, or the cells in the pancreas responsible for producing it.

Discussion: GMO Insulin Not the Same As Animal Derived Insulin

A possible explanation for these results lies in the difference between today's synthetic insulin and insulin purified from animals such as pigs (porcine insulin), which is no longer available in countries like the U.S.

Insulin was actually the first protein to be synthesized with recombinant DNA (GMO) technology in the late 1970s,[2] and today, products like Lantus (insulin glargine [rDNA origin] injection) dominate the market. According to Sanofi, Lantus' manufacturer their form is produced "by recombinant DNA technology utilizing a non-pathogenic laboratory strain of Escherichia coli (K12) as the production organism." Synthetic insulin is classified as an insulin analog that differs significantly from human insulin in its primary amino acid structure: "Insulin glargine differs from human insulin in that the amino acid asparagine at position A21 is replaced by glycine and two arginines are added to the C-terminus of the B-chain."  Lantus' formulation also contains various 'inactive ingredients,' such as:

  • hydrochloric acid
  • sodium hydroxide (lye)
  • zinc
  • m-cresol (a coal tar derivative)
  • glycerol
  • polysorbate 20

The simultaneous injection of these antigenic ingredients along with synthetic insulin could be responsible for hypersensitizing the immune system against insulin in the same way that inactive and adjuvant ingredients in vaccines induce exaggerated immune reactions against the 'active' vaccine antigen (e.g. the viral or bacterial antigen) which sometimes results in the immune system attacking self-structures (autoimmunity).  

Continue to Page 2

Pages :
Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of GreenMedInfo or its staff.