Sucralose's (Splenda) Harms Vastly Underestimated: Baking Releases Dioxin

Sucralose's (Splenda) Harms Vastly Underestimated: Baking Releases Dioxin

A new, in-depth review on the synthetic sweetener sucralose (marketed as Splenda), published in the journal of Toxicology and Environmental Health, is destined to overturn widely held misconceptions about the purported safety of this ubiquitous artificial sweetener.

Found in tens of thousands of products and used by millions of consumers around the world, sucralose's unique ability to dissolve in alcohol and methanol as well as water, makes it the most versatile and therefore most widely used artificial sweetener in production today. And yet, its popularity is no indication nor guarantee of its safety, as is evidenced by the widespread use of other artificial sweeteners like aspartame, which while being safety approved in 90 nations around the world, has been linked to a wide range of serious health conditions including brain damage. 

But the tide may be turning...

Already this year, the Center for the Public Interest in Science downgraded Splenda from "safe" to "caution," citing their need to evaluate a forthcoming Italian study linking the artificial sweetener to leukemia in mice as a basis for their decision.  

Another recent human study linked Splenda to diabetes-associated changes, calling into question its value as a non-calorie sweetener for those suffering with, or wishing to prevent, blood sugar disorders.

The new study, however, may be the most concerning yet to surface in the peer-reviewed literature. Titled, "Sucralose, a synthetic organochlorine sweetener: overview of biological issues," it reveals an extensive array of hitherto underreported safety concerns, not the least of which is the formation of highly toxic chlorinated compounds, including dioxins, when Splenda is used in baking, an application which its manufacturer, McNeil Nutritionals (a subsidiary of Johnson & Johnson), actively encourages it to be used for. [see: Cooking and Baking: SPLENDA®]

A Dizzying Array of Splenda (Sucralose) Safety Concerns That Have Never Been Adequately Tested

The study argues that, despite its widespread approval and use, further scientific safety research is warranted due the following significant findings:

  • "Sucralose alters metabolic parameters and its chronic effects on body weight are unknown": both animal and human research indicates sucralose may raise blood sugar and insulin levels, indicating it may have diabetogenic properties.
  • "Sucralose alters P-gp and CYP expression": While classified as a food additive, sucralose's organochlorine structure indicates it interferes with a wide range of organochlorine class drugs, and activates detoxification pathways and enzymes, in a manner similar to these xenobiotic chemicals.
  • "The metabolic fate and health profile of sucralose metabolites are currently unknown": Contrary to statements in the research literature that sucralose passes through the body in the feces 'unchanged,' metabolites have been detected in the urine and feces of both animals and humans, the nature and health consequence of which have never been studied
  • "Sucralose alters indigenous bacterial balancein the GIT": Sucralose (delivered as Splenda) has been found to reduce the number of beneficial bacteria in the gastrointesintal tract (e.g., lactobacilli, bifidobacteria), while  increasing the more detrimental bacteria (e.g., enterobacteria). One study found the adverse effects on flora did not return to normal (baseline) after a 3-month recovery period. Sucralose also altered the pH of the gastrointestinal tract.

Finally, and perhaps most importantly:

  • "Numerous toxicological issues regarding long-term exposure to sucralose are unresolved": 1) DNA damage (genotoxicity), and possible adverse epigenetic alterations. 2) The generation of toxic compounds during baking, including chloropropanols, 1,6-DCF and dioxins. 3) The bioaccumulation of sucralose and/or its metabolites 4) The interaction between sucralose and/or its metabolites with drugs have not yet been studied or evaluated

Cancer-Causing Dioxins and Dioxin-Like Compounds Formed When Splenda (Sucralose) Is Cooked

As the reader can plainly see, the picture is a complex one, and there are more unresolved questions than answers. But perhaps the most concerning issue addressed in the report is the 'Safety of Sucralose That Has Been Heated.' According to the paper, historically, sucralose was reported to be heat stable at temperatures used in cooking. But they cite a number of reports from independent laboratories showing that sucralose undergoes thermal degradation when heated. One study showed that the stability of sucralose decreased as the temperature and pH increased, with the breakdown process commencing at 119 degrees Celsius and temperatures of 180 degrees Celsius causing its complete degradation at all pH levels with the release of chloride ions.  Additionally, they refer to research showing that sucralose can break down into the following concerning compounds when heated:

Continue to Page 2

Pages :
Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of GreenMedInfo or its staff.