n/a
Article Publish Status: FREE
Abstract Title:

Acteoside suppresses RANKL-mediated osteoclastogenesis by inhibiting c-Fos induction and NF-κB pathway and attenuating ROS production.

Abstract Source:

PLoS One. 2013 ;8(12):e80873. Epub 2013 Dec 4. PMID: 24324641

Abstract Author(s):

Seung-Youp Lee, Keun-Soo Lee, Sea Hyun Yi, Sung-Ho Kook, Jeong-Chae Lee

Article Affiliation:

Seung-Youp Lee

Abstract:

Numerous studies have reported that inflammatory cytokines are important mediators for osteoclastogenesis, thereby causing excessive bone resorption and osteoporosis. Acteoside, the main active compound of Rehmannia glutinosa, which is used widely in traditional Oriental medicine, has anti-inflammatory and antioxidant potentials. In this study, we found that acteoside markedly inhibited osteoclast differentiation and formation from bone marrow macrophages (BMMs) and RAW264.7 macrophages stimulated by the receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL). Acteoside pretreatment also prevented bone resorption by mature osteoclasts in a dose-dependent manner. Acteoside (10 µM) attenuated RANKL-stimulated activation of p38 kinase, extracellular signal-regulated kinases, and c-Jun N-terminal kinase, and also suppressed NF-κB activation by inhibiting phosphorylation of the p65 subunit and the inhibitor κBα. In addition, RANKL-mediated increases in the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and in the production of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were apparently inhibited by acteoside pretreatment. Further, oral acteoside reduced ovariectomy-induced bone loss and inflammatory cytokine production to control levels. Our data suggest that acteoside inhibits osteoclast differentiation and maturation from osteoclastic precursors by suppressing RANKL-induced activation of mitogen-activated protein kinases and transcription factors such as NF-κB, c-Fos, and NFATc1. Collectively, these results suggest that acteoside may act as an anti-resorptive agent to reduce bone loss by blocking osteoclast activation.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.