n/a
Article Publish Status: FREE
Abstract Title:

Aged garlic extract ameliorates fatty liver and insulin resistance and improves the gut microbiota profile in a mouse model of insulin resistance.

Abstract Source:

Exp Ther Med. 2019 Jul ;18(1):857-866. Epub 2019 Jun 3. PMID: 31281460

Abstract Author(s):

Toshio Maeda, Satomi Miki, Naoaki Morihara, Yoshiyuki Kagawa

Article Affiliation:

Toshio Maeda

Abstract:

Aged garlic extract (AGE) produced by the aging process has various beneficial pharmacological effects. In this study, the effects of AGE on fatty liver, insulin resistance and intestinal microbiota were compared between ddY-H mice, an insulin resistance mouse, and ddY-L mice, normal mice. Mice were fed an AGE-supplemented diet (4% w/w) for 7 weeks. The administration of AGE had no effect on the body weight and dietary intake of both types of mice. In the ddY-H mice, the serum levels of glucose and insulin were increased and glucose tolerance was impaired; however, the administration of AGE ameliorated these abnormal conditions. AGE did not have these effects in ddY-L mice. Triglyceride (TG) accumulation in the liver and fat absorption from the digestive tract were increased in the ddY-H mice; however, the administration of AGE reduced this increase. On the other hand, AGE exerted no such effects in the ddY-L mice. In addition, the gut microbiota has been shown to be closely associated with obesity, diabetes, dyslipidemia and non-alcoholic fatty liver disease in human and animal models. The bacterial composition of the gut microbiota in the feces of the ddY-H mice did not differ from that of the ddY-L mice at 5 weeks of age; however, it was altered in the mice at 9 and 12 weeks of age even when the mice were fed a standard diet. In the ddY-H mice, the relative presence ofwas increased, while that ofandwas decreased. The alteration of the bacterial composition in the ddY-H mice was reversed by the administration of AGE; however, this effect of AGE was not observed in the ddY-L mice. On the whole, the findings of this study indicate that AGE improves abnormal fat accumulation and insulin resistance, and also alters the intestinal flora in ddY-H mice, suggesting the possibility that these effects of AGE may be related.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.