n/a
Article Publish Status: FREE
Abstract Title:

Aged garlic extract and S-allylcysteine increase the GLUT3 and GCLC expression levels in cerebral ischemia.

Abstract Source:

Adv Clin Exp Med. 2019 Dec ;28(12):1609-1614. PMID: 31851788

Abstract Author(s):

Carlos Daniel Gomez, Penélope Aguilera, Alma Ortiz-Plata, Felipe Nares López, María Elena Chánez-Cárdenas, Eugenia Flores-Alfaro, Martha Eugenia Ruiz-Tachiquín, Monica Espinoza-Rojo

Article Affiliation:

Carlos Daniel Gomez

Abstract:

BACKGROUND: During cerebral ischemia, energy restoration through the regulation of glucose transporters and antioxidant defense mechanisms is essential to maintain cell viability. Antioxidant therapy has been considered effective to attenuate brain damage; moreover, the regulation of transcription factors that positively regulate the expression of glucose transporters is associated with this therapy. Recently, it has been reported that the use of antioxidants such as S-allylcysteine (SAC), a component of aged garlic extract (AGE), improves survival in experimental models of cerebral ischemia.

OBJECTIVES: The aim of this study was to determine the effect of AGE and SAC on the level of mRNA expression of the main neuronal glucose transporter (GLUT3) and the glutamate cysteine ligase catalytic subunit (GCLC) in rats with transient focal cerebral ischemia.

MATERIAL AND METHODS: Cerebral ischemia was induced in male Wistar rats by middle cerebral artery occlusion (MCAO) for 2 h. The animals were sacrificed after different reperfusion times (0-48 h). Animals injected with AGE (360 mg/kg, intraperitoneally (i.p.)) and SAC (300 mg/kg, i.p.) at the beginning of reperfusion were sacrificed after 2 h. The mRNA expression level was analyzed in the fronto-parietal cortex using quantitative polymerase chain reaction (qPCR).

RESULTS: Two major increases in GLUT3 expression at 1 h and 24 h of reperfusion were found. Both treatments increased GLUT3 and GCLC mRNA levels in control and under ischemic/reperfusion injury animals.

CONCLUSIONS: This data suggests that SAC and AGE might induce neuroprotection, while controlling reactive oxygen species (ROS) levels, as indicated by the increase in GCLC expression, and regulating the energy content of the cell by increasing glucose transport mediated by GLUT3.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.