n/a
Article Publish Status: FREE
Abstract Title:

Insulin sensitizing effect of 3 Indian medicinal plants: an in vitro study.

Abstract Source:

Indian J Pharmacol. 2013 Jan-Feb;45(1):30-3. PMID: 23543787

Abstract Author(s):

Samidha A Kalekar, Renuka P Munshi, Supriya S Bhalerao, Urmila M Thatte

Article Affiliation:

Samidha A Kalekar

Abstract:

OBJECTIVE: Measurement of glucose uptake into peripheral tissue is an important mechanism to assess Insulin sensitivity. The present in vitro study was conducted to evaluate the Insulin sensitizing activity of Phyllanthus emblica (Pe), Tinospora cordifolia (Tc) and Curcuma longa (Cl) by assessing glucose uptake activity in a 3T3L1 adipocyte model.

MATERIALS AND METHODS: The 3T3 L1 fibroblast cells were differentiated to adipocytes, using a cocktail of insulin, isobutyl-1-methylxanthine and dexamethazone. These adipocytes were initially treated with different concentrations of the selected plants following which 2-deoxy glucose uptake was estimated using a radioactive assay. The effects of plants on glucose uptake both in the presence and absence of insulin was evaluated and compared with pioglitazone, a known insulin sensitizer.

RESULTS: Pe and Tc per se significantly stimulated glucose uptake in 3T3-L1 adipocytes in a dose dependent manner with maximal effect at higher concentrations (200μg/ml). The effect of both Pe and Tc at 200 μg/ml was comparable to insulin and greater than pioglitazone. Cl per se stimulated glucose uptake with maximal effect at 50 μg/ml. However, this effect was lesser as compared to insulin with higher concentrations inhibiting glucose uptake. When combined with insulin, an antagonist effect was observed between Pe, Tc and insulin indicating a possible plant-drug interaction while Cl in combination with insulin showed an increase in the glucose uptake as compared to Cl alone.

CONCLUSION: The results suggest that one of the mechanisms for the anti-diabetic effect of Pe, Cl and Tc may be through an insulin sensitizing effect (stimulation of glucose uptake into adipocytes). Further studies using other target sites viz. skeletal muscle and hepatocytes models and in an insulin resistant state would help substantiate this conclusion.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.