Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a
Abstract Title:

Antibacterial and anti-biofilm activities of cinnamaldehyde against S. epidermidis.

Abstract Source:

Microb Pathog. 2019 Jan ;126:231-238. Epub 2018 Nov 12. PMID: 30439400

Abstract Author(s):

Mariana Albano, Bruno Pereira Crulhas, Fernanda Cristina Bérgamo Alves, Ana Flávia Marques Pereira, Bruna Fernanda Murbach Teles Andrade, Lidiane Nunes Barbosa, Alessandra Furlanetto, Luciana Pupo da Silveira Lyra, Vera Lúcia Mores Rall, Ary Fernandes Júnior

Article Affiliation:

Mariana Albano

Abstract:

The search for new antimicrobial drugs has been necessary due to the increased bacterial resistance to antibiotics currently in use, and natural products play an important role in this field. The aim of this study was to evaluate the in vitro effect of cinnamaldehyde on S. epidermidis strains, biofilm set-up prevention, as well as its effect on pre-established biofilms. The minimum inhibitory concentration (MIC) ranged from 300 to 500 μg/mL, and the minimum bactericidal concentration (MBC) from 400 to 600 μg/mL. The biofilm inhibitory concentration and biofilm eradication concentration values were four-fold (clinical isolate) and eight-fold (ATCC strain) greater than the concentration required to inhibit planktonic growth.Sub-inhibitory concentrations of cinnamaldehyde attenuated biofilm formation of S. epidermidis strains on polystyrene microtiter plates. The combination of cinnamaldehyde and linezolid was able to inhibit S. epidermidis with a bactericidal effect. Further investigation of the mechanism of action ofcinnamaldehyde revealed its effect on the cell membrane permeability, and confocal laser scanning microscopy (CLSM) images illustrated the impact of cinnamaldehyde in the detachment and killing of existing biofilms. Thereby, our data confirmed the ability of cinnamaldehyde to reduce bacterial planktonic growth of S. epidermidis, inhibiting biofilm formation and eradicating pre-formed biofilm.

Study Type : In Vitro Study

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.