n/a
Abstract Title:

Antimicrobial mechanism of reaction products of Morus notabilis (mulberry) polyphenol oxidases and chlorogenic acid.

Abstract Source:

Phytochemistry. 2019 Jul ;163:1-10. Epub 2019 Apr 8. PMID: 30974396

Abstract Author(s):

Dan Liu, Shuai Meng, Zhonghuai Xiang, Ningjia He, Guangwei Yang

Article Affiliation:

Dan Liu

Abstract:

Herein, five polyphenol oxidases (PPOs) obtained from Morus notabilis (Mn) were characterized. Chlorogenic acid was the most readily oxidized substrate by these MnPPOs, and the products derived from the oxidation of chlorogenic acid by MnPPOs were tested for antimicrobial activity. The results showed that products of the five MnPPOs exhibited good inhibitory effects against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Sclerotinia sclerotiorum, and Botrytis cinerea. Because the products of MnPPO1 exhibited the strongest antimicrobial activity, the antimicrobial mechanism of these products was explored. The results showed that the products of MnPPO1 increased cell membrane permeability and chitinase andβ-1,3-glucanase activities.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.