n/a
Abstract Title:

Standardized flavonoid-rich fraction of Artemisia princeps Pampanini cv. Sajabal induces apoptosis via mitochondrial pathway in human cervical cancer HeLa cells.

Abstract Source:

J Ethnopharmacol. 2012 May 7 ;141(1):460-8. Epub 2012 Mar 18. PMID: 22449440

Abstract Author(s):

Hye-Kyung Ju, Heon-Woo Lee, Kyung-Sook Chung, Jung-Hye Choi, Jin-Gyeong Cho, Nam-In Baek, Hae-Gon Chung, Kyung-Tae Lee

Article Affiliation:

Hye-Kyung Ju

Abstract:

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia princeps Pampanini is widely used in Eastern traditional medicine for the treatment of circulatory disorders, such as, dysmenorrhea, hematuria, hemorrhoids, and inflammation, and is also used to treat chronic conditions, such as, cancers, ulcers, and digestive disorders.

AIM OF THE STUDY: The purpose of this study is to investigate the effect of a standardized flavonoid-rich fraction of Artemisia princeps Pampanini cv. Sajabal (FRAP) on the induction of apoptosis and the molecular mechanism involved in human cervical cancer HeLa cells.

MATERIALS AND METHODS: Human cervical cancer HeLa cells were treated with FRAP and apoptosis was detected by cell morphologic observation, annexin-V-PI staning and western blot analysis on the expression of protein associated with cell death.

RESULTS: FRAP led to the cleavages of caspase-3, -8, and -9 and the cleavage of poly (ADP-ribose) polymerase (PARP) in HeLa cells. Caspase-3 inhibitor (z-DEVD-fmk), caspase-8 inhibitor (z-IETD-fmk), caspase-9 inhibitor (z-LEHD), and broad caspase inhibitor (z-VAD-fmk) significantly suppressed the FRAP-induced accumulation of annexin V positive cells. Furthermore, it was found that FRAP caused a loss of mitochondrial membrane potential (MMP) and the release of cytochrome c to the cytosol. Furthermore, the overexpression of Bcl-xL significantly prevented FRAP-induced apoptosis, MMP changes, and the activations of caspase-3, -8, and -9. Interestingly, pretreatment with caspase-8 inhibitor significantly reduced the FRAP-induced activation of caspase-3 but not that of caspase-9, whereas the caspase-3 inhibitor, z-DEVD-fmk, markedly attenuated the FRAP-induced activation of caspase-8. In BALB/c(nu/nu) mice bearing a HeLa xenograft, FRAP dosed at 25 or 50mg/kg significantly inhibited tumor growth.

CONCLUSION: Our results indicate caspase-mediated activation of the mitochondrial death pathway plays a critical role in the FRAP-induced apoptosis of HeLa cells and that FRAP inhibits the in vivo tumor growth of HeLa xenograft mice.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.